Here we present a protocol for the optimized FlashPack capillary column packing procedure. Application of an optimized protocol to a common 100-bar pressure bomb setup allows 10-times faster packing and manufacturing of long ultra-high performance capillary columns.
Capillary ultra-high performance liquid chromatography (UHPLC) is currently a method of choice for the sample separation step in LC-MS-based proteomics. However, capillary columns are much less robust in comparison to their higher flow countertypes. Because of easy contamination and blocking, they often need replacement. That makes them a markedly expensive part of the total LC-MS analysis cost. In-house packing of UHPLC capillary columns saves a lot of money and allows customization. However, the standard packing procedure in the 100-bar pressure bomb works well only for HPLC columns but is too slow for UHPLC sorbents. Here we provide a description of an optimized FlashPack protocol applied to the same 100-bar pressure bomb setup. The method is based on packing from ultra-high sorbent concentration slurry and is developed for in-house manufacturing of UHPLC capillary columns of unlimited length in reasonable time.
Modern proteomics is based on liquid chromatography-coupled mass spectrometry with the ultra-high performance nano-flow chromatography (50-150 µm column internal diameter (ID)) separation providing the best analysis speed and sensitivity1. While numerous commercial UHPLC capillary columns are available, their price makes up a major part of the consumables cost, especially when multiple diverse projects are run in the laboratory and project-specific column contamination is a frequent issue. Besides, packing of columns in-house allows the use of custom experiment-specific sorbents (such as, e.g., polyCAT-A sorbent2) and column characteristics not available for buying as a ready-made column.
To cope with that, many laboratories pack capillary columns in-house. However, the common packing procedure with a 100 bar pressure bomb (pressure injection cell)3 is ill-suited to the UHPLC column packing due to high backpressure of sub-2 µm UHPLC sorbents resulting in a dramatic packing rate reduction in comparison to larger-sized HPLC sorbents. While short UHPLC columns can still be very slowly packed, manufacturing of long UHPLC columns is physically impossible4.
Standard capillary column packing is done at relatively low pressures-up to 100 bars, and with a very low sorbent slurry concentration. Hence, two possible directions of speeding-up the process are available. It is possible to increase the packing pressure5. However, this requires special equipment and, practically, installation of a new method in the laboratory. Another way is to increase the sorbent slurry concentration6. High sorbent slurry concentration packing is described in combination with ultra-high packing pressure in a previous publication7. However, at 100 bar pressure, which is used in most of the existing packing bombs, higher sorbent concentration results in either packing rate slow-down or outright packing cessation. The effect was recently demonstrated to be due to sorbent clustering at the column entrance, and a simple trick of sorbent cupola destabilization by hammering the column entrance with a magnet bar inside a sorbent vial was suggested4. The resulting method, named FlashPack, uses the same 100-bar pressure bomb packing setup. At the same time, minor but critical changes in the packing procedure allow packing from very high sorbent slurry concentration and production of very long UHPLC columns (50 to 70 cm, and longer) in less than an hour, while a short column can be produced in minutes with the separation quality equal to commercial columns of the same parameters4. The FlashPack approach was already successfully used in multiple proteomics projects for the preparation of both reverse phase (RP)8,9,10,11,12,13,14 and hydrophilic interaction (HILIC)2 capillary columns.
Here we describe in detail, the modifications needed for adaptation of the FlashPack approach to the standard 100-bar pressure bomb packing procedure.
The packing protocol consists of five steps (Figure 1): 1) Packing station preparation, 2) capillary preparation, 3) sorbent slurry preparation, 4) capillary packing in the pressure bomb, and 5) column packing-up in the HPLC system, cutting up to the size and UHPLC connection installation. The FlashPack optimization requires adjustments to be made in sections 3 and 4 as compared to the common protocol.
1. Packing station assembly
2. Capillary preparation
3. Sorbent slurry preparation
4. Capillary packing in a pressure bomb
CAUTION: Always wear protective glasses when working with the pressure bomb. Do not wear gloves. These severely reduce the sense of touch required for proper handling of small diameter capillaries and lead to mistakes.
5. Packing in the HPLC column
The FlashPack approach is based on the standard packing setup and follows the same packing pipeline. Packing is done into standard fritted or pulled emitter capillaries. The principal optimization lies in the sorbent slurry concentration: the standard method is incompatible with a high-concentrated sorbent suspension used in FlashPack. The result is a fast production method for long UHPLC columns, for example, a column packed for 50 cm length with 1.9 µm sorbent in less than 1 h (Figure 2).
To demonstrate the application of the FlashPack approach, a 30 cm 100 µm ID capillary column was prepared (Table 6). Packing of ReprosilPur C18 1.9 µm sorbent was done at 60 bars into a 50 cm long 100 µm ID pulled emitter capillary, prepared by a P2000 laser puller. The capillary was packed to ~40 cm in 40 min with some more loose sorbent left inside the capillary. The packed capillary was connected to an HPLC system and run at 300 nL/min with solvent B (80% acetonitrile, 0.1% FA). After two rounds of 5 s sonication, the final packed length was 43 cm. The column was disconnected, cut to 30 cm and connected to the HPLC system using a UHPLC connection. We routinely use 360 µm sleeveless PEEK nut-ferrule and 360 µm stainless steel union. This combination holds at least up to 700 bars if tightened strongly. The manufactured column has a backpressure of 520 bars at 2% solvent B at 500 nL/min, which is consistent with the expected value range (Table 5).
As a demonstration of the column efficiency, we used the manufactured 30 cm column to separate 50 fmol of a tryptic digest of cytochrome C protein in a 15 min gradient from 2% to 50% B. Extracted ion chromatograms showed the peaks to be highly symmetrical with minimum tailing. Average FWHM was around 3 s (Figure 3).
Table 1: Troubleshooting for high working backpressure of the column. Please click here to download this Table.
Table 2: P2000/F laser puller program. P2000/F laser puller program for the preparation of pulled emitter capillaries from 360 µm OD 100 µm ID fused-silica polyimide coated capillaries without internal coating at room temperatures 23-25 °C. Please click here to download this Table.
Table 3: FlashPack-specific packing issues and checkpoints to control during the packing process. Please click here to download this Table.
Table 4: Exemplary packing and working flow rates for different column IDs and length. Please click here to download this Table.
Table 5: Expected backpressure for a column packed with 2 µm spherical sorbents and run at working flow rate (according to the column ID) in RP solvent system at RT. Please click here to download this Table.
Table 6: Exemplary packing of 30 cm UHPLC column. Please click here to download this Table.
Figure 1: Capillary column packing scheme. Stages 1 to 3 are preparatory, followed by pressure bomb packing and finished by HPLC packing-up. Stages 3 and 4 are modified for the ultra-efficient FlashPack protocol. Please click here to view a larger version of this figure.
Figure 2: Packing rate for a fritted capillary 100 µm ID with ReprosilPur C18 AQ 1.9 µm at 100 bars in methanol. Please click here to view a larger version of this figure.
Figure 3: Extracted ion chromatograms of tryptic peptides of cytochrome C. Extracted ion chromatograms of tryptic peptides of cytochrome C after separation of 50 fmol in 30 cm long 100 mm ID pulled emitter capillary column packed with ReprosilPur C18 AQ 1.9 µm in a gradient of buffer B (80% acetonitrile, 0.1% FA) and in buffer A (2% acetonitrile, 0.1% FA) from 2% to 40% B in 15 min at 500 nL/min at RT. Detection was performed using a mass-spectrometer. Absolute intensities and extracted m/z ranges for each peptide are shown to the right of the spectra. Please click here to view a larger version of this figure.
In-house capillary column packing is highly popular in large laboratories working on multiple independent projects. However, a common packing method from a low concentration sorbent suspension has major limitations in the speed and is unable to produce long UHPLC columns.
FlashPack is a modification of the standard packing procedure which makes packing from a very high sorbent concentration possible. The theoretical basis of the method lies in the continuous sorbent cupola destabilization at the column entrance for the whole packing duration. The latter is technically achieved by column entrance being continuously hit with a magnet bar. The method of cupola destabilization is intentionally developed to have the packing setup completely similar to the common packing process, but the trick of FlashPack lies in the details of the sorbent slurry preparation, capillary positioning, and magnet bar usage during the packing process.
The sorbent slurry is prepared as a sediment sorbent layer in a large solvent volume. It is interesting that the pressure bomb-based packing does not require the same packing conditions for column to column. In FlashPack, we never know the exact sorbent slurry concentration around the column entrance. It is impossible to measure and control exactly, as it also changes during the packing process. However, the final columns are still very reproducible4 irrespective of how the packing was achieved.
The basis for the fast packing lies in the efficient sorbent cupola destabilization. For this reason, it is important to control sorbent entering the capillary and to maintain the optimal cupola destabilization conditions throughout the whole packing duration. There are several possible issues that might prevent efficient sorbent delivery. Some examples of these are sorbent layer resuspension by fast magnetic bar rotation, inefficient cupola destabilization due to either wrong relative capillary to the magnet bar positioning or too slow magnet bar rotation. The issues themselves and how they are to be addressed are discussed in detail in the protocol section.
After the column is packed, the major column parameter to check is the column backpressure. The pressure values listed in Table 5 provides a reference point to what is expected for one of the popular sub 2 µm bead size sorbent-ReproSil PUR C18 AQ (1.9 µm). At the same time, additional backpressure might be added by the frit or a too narrowly pulled emitter and one should constantly monitor for that. If packing is done into a pulled emitter, we still suggest measuring the expected column backpressure for the particular sorbent in use by packing fritted capillaries first, and then to see whether the self-assembling frit adds too much. For any high-pressure issues, use the guidelines provided in Table 1 to pinpoint the problem.
In our experience, a packed column without discolorations, gaps, and with the proper backpressure works in 100% of the cases and gives the separation quality close to what can be expected from the column length and sorbent characteristics. A column with discolorations is not guaranteed to work properly but can still give satisfactory results.
Most of the time, if there are any problems with the separation quality, they do not come from the column itself, but rather from other parts of the separation system, namely, pumps, solvents, or connections. Especially potentially harmful is any post-column connections. Bad connection with a dead volume between the emitter and the fritted column leads to major peak broadening and tailing due to very low flow rates in capillary chromatography.
One more important issue specific to the FlashPack approach is that it uses a lot of expensive sorbents in a working sorbent slurry vial. Please remember, that the sorbent slurry in FlashPack is intended for multiple use. Take care of the sorbent. Avoid unnecessary magnet bar stirring to reduce sorbent grinding-remember to stop the rotation as soon as the packing is finished. And do not leave the open sorbent vial in the pressure bomb to avoid sorbent drying. Though the sorbent can still be used after that, it takes time to remake the sorbent slurry.
The method works equally well for both fritted capillaries and pulled-emitter capillaries. The FlashPack principle increases the packing rate for capillary IDs from 20 to 250 µm (smaller and larger were not tested). It is also applicable to all the sorbents, both fully and superficially porous, we could test (reflecting that the sorbent cupola formation in high sorbent slurry concentration is not limited specifically to RP sorbents). Besides, solvent parameters clearly affect the packing according to their physical and chemical characteristics. For example, less viscous acetone gives even higher packing rate than methanol at the same packing pressure. However, it is also less polar than methanol and reduces sorbent particles sticking to each other. The effect by itself prevents sorbent cupola formation in the beginning of the packing when the flowrate is still high. However, reduction in sorbent particle interaction also leads to less reliable self-assembling frit formation and more frequent pulled-end blocking during the packing. So, while acetone is better for packing of fritted capillaries, it is less suitable for pulled-emitter capillaries, with the methanol as a slurry solvent being slower but suitable for both types of ending. Packing from hexane or dichloromethane (DCM) are extreme cases of switching to acetone from methanol: they are even less polar, so they prevent sorbent cupola formation completely, however they are not fit for pulled-emitter packing at all. Besides, it was noted that extremely low DCM polarity leads to sorbent particles sticking to the internal capillary wall and making a thick layer on it. The layer thickness gradually grows and random local blocks form resulting in the column packed in several parts separated by regions without sorbent. Such effect was observed for C18 Peptide Aeris sorbent.
Another observed issue was YMC Triart C18 sorbent not being suspended in methanol properly, but to form some sort of flakes. However, that does not prevent it from getting packed with the FlashPack and giving very decent separation efficiency (unpublished data). Thus, while not being optimal for some cases, methanol was the most universal solvent to work for all the tested sorbents and columns. It is necessary to mention that we did not yet analyze how different slurry solvents affect column separation efficiency. At the same time, the efficiency of columns packed from methanol is already completely equal to commercial columns for the same sorbents4.
FlashPack is not the only existing approach to improve the packing rate of UHPLC columns. Fast packing from high sorbent slurry concentration is also possible with the use of ultra-high pressure packing7. The advantage of FlashPack is that it is much simpler as it does not require special ultra-high pressure pumps and pressure bombs for sorbent delivery and capillary connections. At the same time, it was demonstrated that the columns packed at extreme pressures can have separation efficiency higher than lower pressure packed columns17. And while FlashPack produces columns identical to commercial ones used in the comparison4, for which we do not know the packing method, it was not yet tested how FlashPack columns stand against ultra-high pressure packed columns.
In summary, the described FlashPack method can be easily adapted to the existing packing protocol in the laboratory with some adjustments made to the protocol, while the setup stays completely the same. It speeds up the HPLC capillary column packing to minutes' time and allows production of long UHP capillary columns, which is plainly impossible with the standard packing procedure. The overall economy in the time and money for the laboratory by application of the FlashPack approach can be counted in tens of thousands of Euros per year. Additionally, ability to produce UHP capillary columns locally opens the possibilities for experiment customization impossible with the available commercial products.
The authors declare that they have no competing financial interests.
The work was supported by RSF grant 20-14-00121. The authors thank P. V. Shliaha (Memorial Sloan Kettering Cancer Center) for fruitful discussions.
Name | Company | Catalog Number | Comments |
Acetonitrile with 0.1% (v/v) Formic acid | Merck | 1.59002 | |
centrifuge tube 1.5 mL | Eppendorf | ||
Ceramic Scoring Wafer | Restek | 20116 | any ceramic wafer is suitable for capillary polishing |
Diamond-chip bladed scribe | NewObjective | Diamond-chip bladed scribe | recommended for capillary cutting |
fused silica capillary 100 mm ID 375 mm OD | CM Scientific | TSP100375 | |
GELoader tips | Eppendorf | 30001222 | |
HPLC system | ThermoScientific | Ultimate3000 RSLCnano | |
laser puller | Sutter | P2000/F | |
magnet bar 2x5 mm | Merck | Z283819 | |
MeOH | Merck | 1.06018 | |
microspatula | Merck | Z193216 | |
PEEK ferrule 360 mm | VICI | JR-C360NFPK | use to connect the column to UPLC union |
pipette tip, 1000 uL | Merck | Z740095 | |
pipette, 1000 uL | Gilson | Pipetman L P1000L | |
pressure bomb | NextAdvance | PC-77 MAG | |
regulator | GCE | Jetcontrol 600 200/103 | |
Reprosil Pur C18 AQ 120 1.9 mm | Dr. Maisch | r13.aq.0001 | |
Screw cap tubes without caps, conical bottom, self-standing, 0.5 mL | Merck | AXYST050SS | |
Screw cap tubes without caps, conical bottom, self-standing, 1.5 mL | Merck | AXYST150SS | |
Screw caps with O-rings | Merck | AXYSCOC | |
sonication bath | Elma | Elmasonic S30 H | |
union HPLC | VICI | JR-C360RU1PK6 | HPLC connection from 1/16 OD HPLC capillary to 360 um capillary column |
union UPLC | VICI | JR-C360RU1FS6 | UPLC connection from 1/16 OD HPLC capillary to 360 um capillary column |
vortex | BioSan | V-1plus | |
Water with 0.1% (v/v) Formic acid | Merck | 1.59013 |
Explore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved