A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here we describe two modifications of the DNA fiber assay to investigate single-stranded DNA gaps in replicating DNA after lesion induction. The S1 fiber assay enables the detection of post-replicative gaps using the ssDNA-specific S1 endonuclease, while the gap-filling assay allows visualization and quantification of gap repair.
The DNA fiber assay is a simple and robust method for the analysis of replication fork dynamics, based on the immunodetection of nucleotide analogs that are incorporated during DNA synthesis in human cells. However, this technique has a limited resolution of a few thousand kilobases. Consequently, post-replicative single-stranded DNA (ssDNA) gaps as small as a few hundred bases are not detectable by the standard assay. Here, we describe a modified version of the DNA fiber assay that utilizes the S1 nuclease, an enzyme that specifically cleaves ssDNA. In the presence of post-replicative ssDNA gaps, the S1 nuclease will target and cleave the gaps, generating shorter tracts that can be used as a read-out for ssDNA gaps on ongoing forks. These post-replicative ssDNA gaps are formed when damaged DNA is replicated discontinuously. They can be repaired via mechanisms uncoupled from genome replication, in a process known as gap-filling or post-replicative repair. Because gap-filling mechanisms involve DNA synthesis independent of the S phase, alterations in the DNA fiber labeling scheme can also be employed to monitor gap-filling events. Altogether, these modifications of the DNA fiber assay are powerful strategies to understand how post-replicative gaps are formed and filled in the genome of human cells.
Seminal works have provided evidence of the accumulation of post-replicative single-stranded (ssDNA) gaps upon treatment with DNA damaging agents in bacteria1 and human cells2,3. During replication of damaged DNA templates, the DNA synthesis machinery may bypass the lesions by employing specific translesion synthesis DNA polymerases or through template switching mechanisms. Alternatively, the replisome may also simply skip the lesion leaving an ssDNA gap behind, to be repaired later. More recently, a study clearly showed that treatment with genotoxic agents leads to ssDNA gaps in eukary....
As the study uses human cells, the work was approved by the Ethics Committee of the Institute of Biomedical Science at the University of São Paulo (ICB-USP, approval number #48347515.3.00005467) for the research with human samples.
NOTE: The protocols described here were used in previous publications with minor modifications14,16,28. Here the focus is on the use of ultraviolet light C (UVC) as a .......
In the S1 Fiber assay, if treatment with a genotoxic agent leads to post-replicative ssDNA gaps, the overall lengths of DNA fibers from S1-treated nuclei will be shorter upon treatment with DNA damage compared to untreated samples as well as to samples that were treated with the genotoxic agent but were not submitted to S1 cleavage (Figure 1).
Alternatively, if treatment with the S1 nuclease does not significantly affect the length of DNA fibers compared to untrea.......
Critical steps of the standard DNA fiber assay protocol were discussed in a previous publication32. Here, we describe modified versions of the standard DNA fiber assay to investigate the presence of post-replicative ssDNA gaps as well as their repair by gap-filling, initially described in14. In the context of post-replicative ssDNA gap presence, the use of the S1 nuclease in the S1 Fiber protocol would most likely be suitable after exposure of a genotoxic agent for a minimu.......
The work in C.F.M.M. laboratory is supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil, Grants #2019/19435-3, #2013/08028-1 and 2017/05680-0) under the International Collaboration Research from FAPESP and The Netherlands Organization for Scientific Research (NWO, The Netherlands); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, DF, Brazil, Grants # 308868/2018-8] and Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES, Brasília, DF, Brazil, Finance Code 001).
....Name | Company | Catalog Number | Comments |
Acetic acid, Glacial | Synth | 64-19-7 | Alternatively, BSA - Biosera - REF PM-T1725/100 |
Ammonium hydroxide | Synth | 1336-21-6 | Or similar |
Antibody anti-mouse IgG1 Alexa Fluor 594 | Invitrogen | A11005 | - |
Antibody anti-rat Alexa Fluor 488 | Invitrogen | A21470 | - |
Antibody Mouse anti-BrdU | Becton Disckson | 347580 | - |
Antibody Rat anti-BrdU | Abcam | Ab6326 | - |
Biological security hood | Pachane | PA 410 | Use hood present in the laboratory |
BSA (Bovine Serum Albumin) | Sigma-Aldrich | A3294 | Or similar |
Cell scraper | Thermo Scientific | 179693 | Or similar |
CldU | Millipore-Sigma | C6891 | - |
Cloridric acid | Synth | 7647-01-0 | Or similar |
Confocal Zeiss LSM Series (7, 8 or 9) | Zeiss | - | Or similar |
Cover glass (or coverslips) | Thermo Scientific | 152460 | Alternatively, Olen - Kasvi Cover Glass (24 x 60 mm) - K5-2460 |
DMEM - High Glucose | LGC/Gibco | BR30211-05/12100046 | Use culture media specific for the cell line used. |
EDTA (Ethylenediaminetetraacetic acid disodium salt dihydrate) | Sigma-Aldrich | E5314 | Or similar |
Epifluorescence Microscope Axiovert 200 | Zeiss | - | Or similar |
FBS (Fetal Bovine Serum) | Gibco | 12657-029 | Or similar |
Forma Series II Water Jacketed CO2 Incubator | Thermo Scientific 3110 | 13-998-074 | Use cell incubator present in the laboratory |
Glass slide jar | Sigma-Aldrich | S5516 | Or similar |
Glycerol | Sigma-Aldrich | 56-81-5 | Or similar |
Idu | Millipore-Sigma | I7125 | - |
Magnesium Chloride | Synth | 7791-18-6 | Or similar |
Methanol | Merck | 67-56-1 | Or similar |
Microscope slides | Denville | M1021 | Alternatively, Olen - Kasvi Microscope Slides - K5-7105 OR Precision Glass Line - 7105-1 |
MOPS (Ácido 3-morfolinopropano 1-sulfônico) | Synth | 1132-61-2 | Or similar |
Nocodazole | Sigma-Aldrich | 31430-18-9 | - |
PBS (Phosphate Buffer Saline) | Life Thechnologies | 3002 | Or similar |
Penicillin-Streptomycin | Gibco | 15140122 | Or similar |
ProLong Gold AntiFade Mountant | Invitrogen | P36930 | Any antifade moutant solution for immunofluorescence could be used |
S1 nuclease purified from Aspergillus oryzae | Invitrogen | 18001-016 | Pre-dilute the S1 nuclease (1/100 - 1/200) in S1 nuclease dilution buffer provided by the manufacturer, aliquote and store at -20 °C |
SDS (Sodium Dodecyl Sulfate) | BioRad | 161-0302 | Or similar |
Sodium Acetate Trihydrate | Sigma-Aldrich | 6131-90-4 | Or similar |
Sodium Chloride | Synth | 7647-14-5 | Or similar |
Sucrose | Sigma-Aldrich | 57-50-1 | Or similar |
Tris Base | West Lab Research | BP152-1 | Or similar |
Triton X-100 | Synth | 9002-93-1 | Or similar |
Trypsin | Gibco | 25200072 | Or similar |
Tween 20 | Sigma-Aldrich | P1379 | Or similar |
UVC Lamp | Non Specific | - | Essential: emission lenght of 254 nm |
VLX-3W UV Radiometer | Vilber Loumart | - | Or similar |
Zinc Acetate | Sigma-Aldrich | 557-34-6 | Or similar |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved