Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we describe two modifications of the DNA fiber assay to investigate single-stranded DNA gaps in replicating DNA after lesion induction. The S1 fiber assay enables the detection of post-replicative gaps using the ssDNA-specific S1 endonuclease, while the gap-filling assay allows visualization and quantification of gap repair.

Abstract

The DNA fiber assay is a simple and robust method for the analysis of replication fork dynamics, based on the immunodetection of nucleotide analogs that are incorporated during DNA synthesis in human cells. However, this technique has a limited resolution of a few thousand kilobases. Consequently, post-replicative single-stranded DNA (ssDNA) gaps as small as a few hundred bases are not detectable by the standard assay. Here, we describe a modified version of the DNA fiber assay that utilizes the S1 nuclease, an enzyme that specifically cleaves ssDNA. In the presence of post-replicative ssDNA gaps, the S1 nuclease will target and cleave the gaps, generating shorter tracts that can be used as a read-out for ssDNA gaps on ongoing forks. These post-replicative ssDNA gaps are formed when damaged DNA is replicated discontinuously. They can be repaired via mechanisms uncoupled from genome replication, in a process known as gap-filling or post-replicative repair. Because gap-filling mechanisms involve DNA synthesis independent of the S phase, alterations in the DNA fiber labeling scheme can also be employed to monitor gap-filling events. Altogether, these modifications of the DNA fiber assay are powerful strategies to understand how post-replicative gaps are formed and filled in the genome of human cells.

Introduction

Seminal works have provided evidence of the accumulation of post-replicative single-stranded (ssDNA) gaps upon treatment with DNA damaging agents in bacteria1 and human cells2,3. During replication of damaged DNA templates, the DNA synthesis machinery may bypass the lesions by employing specific translesion synthesis DNA polymerases or through template switching mechanisms. Alternatively, the replisome may also simply skip the lesion leaving an ssDNA gap behind, to be repaired later. More recently, a study clearly showed that treatment with genotoxic agents leads to ssDNA gaps in eukary....

Protocol

As the study uses human cells, the work was approved by the Ethics Committee of the Institute of Biomedical Science at the University of São Paulo (ICB-USP, approval number #48347515.3.00005467) for the research with human samples.

NOTE: The protocols described here were used in previous publications with minor modifications14,16,28. Here the focus is on the use of ultraviolet light C (UVC) as a .......

Representative Results

In the S1 Fiber assay, if treatment with a genotoxic agent leads to post-replicative ssDNA gaps, the overall lengths of DNA fibers from S1-treated nuclei will be shorter upon treatment with DNA damage compared to untreated samples as well as to samples that were treated with the genotoxic agent but were not submitted to S1 cleavage (Figure 1).

Alternatively, if treatment with the S1 nuclease does not significantly affect the length of DNA fibers compared to untrea.......

Discussion

Critical steps of the standard DNA fiber assay protocol were discussed in a previous publication32. Here, we describe modified versions of the standard DNA fiber assay to investigate the presence of post-replicative ssDNA gaps as well as their repair by gap-filling, initially described in14. In the context of post-replicative ssDNA gap presence, the use of the S1 nuclease in the S1 Fiber protocol would most likely be suitable after exposure of a genotoxic agent for a minimu.......

Acknowledgements

The work in C.F.M.M. laboratory is supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil, Grants #2019/19435-3, #2013/08028-1 and 2017/05680-0) under the International Collaboration Research from FAPESP and The Netherlands Organization for Scientific Research (NWO, The Netherlands); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, DF, Brazil, Grants # 308868/2018-8] and Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES, Brasília, DF, Brazil, Finance Code 001).

....

Materials

NameCompanyCatalog NumberComments
Acetic acid, GlacialSynth64-19-7Alternatively, BSA - Biosera - REF PM-T1725/100
Ammonium hydroxideSynth1336-21-6Or similar
Antibody anti-mouse IgG1 Alexa Fluor 594InvitrogenA11005-
Antibody anti-rat Alexa Fluor 488InvitrogenA21470-
Antibody Mouse anti-BrdUBecton Disckson347580-
Antibody Rat anti-BrdUAbcam Ab6326-
Biological security hoodPachanePA 410Use hood present in the laboratory
BSA (Bovine Serum Albumin)Sigma-AldrichA3294Or similar
Cell scraperThermo Scientific179693Or similar
CldUMillipore-SigmaC6891-
Cloridric acidSynth7647-01-0Or similar
Confocal Zeiss LSM Series (7, 8 or 9)Zeiss-Or similar
Cover glass (or coverslips)Thermo Scientific152460Alternatively, Olen - Kasvi Cover Glass (24 x 60 mm) - K5-2460
DMEM - High GlucoseLGC/GibcoBR30211-05/12100046Use culture media specific for the cell line used.
EDTA (Ethylenediaminetetraacetic acid disodium salt dihydrate)Sigma-AldrichE5314Or similar
Epifluorescence Microscope Axiovert 200Zeiss-Or similar
FBS (Fetal Bovine Serum)Gibco12657-029Or similar
Forma Series II Water Jacketed CO2 IncubatorThermo Scientific 311013-998-074Use cell incubator present in the laboratory
Glass slide jarSigma-AldrichS5516Or similar
GlycerolSigma-Aldrich56-81-5Or similar
IduMillipore-SigmaI7125-
Magnesium ChlorideSynth7791-18-6Or similar
MethanolMerck67-56-1Or similar
Microscope slidesDenvilleM1021Alternatively, Olen - Kasvi Microscope Slides - K5-7105 OR Precision Glass Line - 7105-1
MOPS (Ácido 3-morfolinopropano 1-sulfônico)Synth1132-61-2Or similar
NocodazoleSigma-Aldrich31430-18-9-
PBS (Phosphate Buffer Saline)Life Thechnologies3002Or similar
Penicillin-StreptomycinGibco15140122Or similar
ProLong Gold AntiFade MountantInvitrogenP36930Any antifade moutant solution for immunofluorescence could be used
S1 nuclease purified from Aspergillus oryzaeInvitrogen18001-016Pre-dilute the S1 nuclease (1/100 - 1/200) in S1 nuclease dilution buffer provided by the manufacturer, aliquote and store at -20 °C
SDS (Sodium Dodecyl Sulfate)BioRad161-0302Or similar
Sodium Acetate TrihydrateSigma-Aldrich6131-90-4Or similar
Sodium ChlorideSynth 7647-14-5Or similar
SucroseSigma-Aldrich57-50-1Or similar
Tris BaseWest Lab ResearchBP152-1Or similar
Triton X-100Synth9002-93-1Or similar
TrypsinGibco25200072Or similar
Tween 20Sigma-AldrichP1379Or similar
UVC LampNon Specific-Essential: emission lenght of 254 nm
VLX-3W UV RadiometerVilber Loumart-Or similar
Zinc AcetateSigma-Aldrich557-34-6Or similar

References

  1. Rupp, W. D., Howard-Flanders, P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. Journal of Molecular Biology. 31 (2), 291-304 (1968).
  2. Meneghini, R.

Explore More Articles

DNA Fiber AssayPost replicative GapsS1 NucleaseDNA RepairReplication StressGenome IntegrityUV C IrradiationCldU IncorporationCSK PermeabilizationDNA Lesion Detection

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved