A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The mechanical conflict-avoidance assay is used as a non-reflexive readout of pain sensitivity in mice which can be used to better understand affective-motivational responses in a variety of mouse pain models.
Pain comprises of both sensory (nociceptive) and affective (unpleasant) dimensions. In preclinical models, pain has traditionally been assessed using reflexive tests that allow inferences regarding pain's nociceptive component but provide little information about the affective or motivational component of pain. Developing tests that capture these components of pain are therefore translationally important. Hence, researchers need to use non-reflexive behavioral assays to study pain perception at that level. Mechanical conflict-avoidance (MCA) is an established voluntary non-reflexive behavior assay, for studying motivational responses to a noxious mechanical stimulus in a 3 chamber paradigm. A change in a mouse's location preference, when faced with competing noxious stimuli, is used to infer the perceived unpleasantness of bright light versus tactile stimulation of the paws. This protocol outlines a modified version of the MCA assay which pain researchers can use to understand affective-motivational responses in a variety of mouse pain models. Though not specifically described here, our example MCA data use the intraplantar complete Freund's adjuvant (CFA), spared nerve injury (SNI), and a fracture/casting model as pain models to illustrate the MCA procedure.
Pain is a complex experience with sensory and affective components. A reduction in the threshold of pain perception and hypersensitivity to thermal and/or mechanical stimuli are key features of this experience, which stimulus-evoked pain behavior tests can capture (like Hargreaves' test of heat sensitivity and the von Frey test of mechanical sensitivity)1,2. Although such tests give robust and reproducible results, they are limited by their reliance on reflexive withdrawal from a perceived noxious stimulus. This has called into question an ongoing reliance of pain research on these tests alone. To that end, pain researchers have for several years been exploring alternative/complementary behavioral tests for use in rodent pain models in an effort to capture more of the affective and/or motivational components of pain. These un-evoked, voluntary, or non-reflexive measures (e.g., wheel running, burrowing activity, conditioned place preference3,4,5) are being implemented in an attempt to improve the translatability of preclinical pain research.
The mechanical conflict avoidance (MCA) assay was originally described by Harte et al. in 20166, is used predominantly in rats7,8, and represents a modification of an earlier approach - the place escape-avoidance paradigm. In this approach, a noxious stimulus of the hind paw is performed in an otherwise desirable (dark) chamber to drive purposeful behavior of the animal to escape/avoid such stimulation9,10. Instead of relying on manual noxious stimulation of the hind paw by an observer, the MCA assay forces mice to negotiate a potentially noxious stimulus to escape an aversive environment and reach the dark chamber. The conflict/avoidance that gives the assay its name arises from these two competing motivations: escape brightly-lit areas and avoid noxious stimulation of the paws. The MCA assay also shares features with conditioned place-preference testing, where the pairing of pain relief with environmental cues drives changes in behavior that reflect a preference for the pain-relieving/rewarding context11.
Fundamentally speaking, all these assays share a similar approach: using a shift in an animal's preference for one aversive environment over another as an indicator of their affective/motivational state. The MCA assay is a 3 chamber paradigm consisting of a brightly lit chamber followed by a dark middle chamber with adjustable height probes and a dark third chamber without any aversive stimuli. An uninjured mouse is typically motivated to escape to a darkened chamber, given the innate aversion of rodents to bright light12. In this example, the natural motivation to escape a brightly-lit environment overcomes the disinclination to encounter hind paw stimulation (the adjustable height probes), which occurs exclusively in the darkened environment. In contrast, a mouse experiencing pain (due to inflammation or neuropathy, for example) may opt to spend more time in the brightly-lit environment, since there is motivation to avoid the unpleasant tactile experience of the mechanical probes in the setting of ongoing tactile hypersensitivity.
This article describes a modified version of the MCA assay. We have adapted the original method (which was performed in rats6) for use in mice. We have also reduced the number of probe heights tested from six to three (0, 2, and 5 mm above floor height) in order to streamline data acquisition. This approach has been tested across multiple pain models, and validated with known analgesics, indicating that pain hypersensitivity and/or the associated affective and motivational changes are driving these changes in behavior. This approach is relatively quick to conduct and adaptable when compared to other non-reflexive measures, which can take many days of habituation and training1,2. In concert with other measures of pain, MCA can generate valuable insights into the affective and motivational aspects of pain.
Access restricted. Please log in or start a trial to view this content.
All experiments involving the use of mice and the procedures followed therein were approved by Institutional Animal Care and Use Committees of MD Anderson Cancer Center and Stanford University, in strict accordance with the National Institutes of Health’s Guide for the Care and Use of Laboratory Animals.
1. MCA construction
2. Mouse MCA habituation and testing
Access restricted. Please log in or start a trial to view this content.
The MCA assay has been used successfully with several mechanistically distinct mouse pain models. Figure 2 shows data where the outcome measure of choice was crossing the mid-point of chamber 2 (Figure 2A). The data obtained by using the halfway point versus escape into chamber 3 are very similar, ~40 s for halfway versus ~45 s for chamber 3 escape in the spared nerve injury (SNI) model of neuropathic pain with 5 mm probe height13.
Access restricted. Please log in or start a trial to view this content.
As with all behavioral tests, proper handling, randomization, and blinding to the treatment of animals is essential throughout. Given the multifactorial inputs into complex behaviors and decision-making, it is imperative that animals are handled, habituated, and tested as consistently as possible while minimizing distress. Care should also be taken to reproduce the timing of mouse placement in chamber 1, switching on the LED lights, and removing the barrier, since differences here could influence subsequent behavior.
Access restricted. Please log in or start a trial to view this content.
The authors have no relevant conflicts of interest to disclose.
GM is supported by an NDSEG Graduate Fellowship. VLT is supported by NIH NIGMS grant #GM137906 and the Rita Allen Foundation. AJS is supported by Department of Defense grants W81XWH-20-1-0277, W81XWH-21-1-0197, and the Rita Allen Foundation. We are grateful to Dr. Alexxai Kravitz at Washington University School of Medicine for designing and making freely available the 3D printer files for the chamber 2 floor and probe plate.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
32.8ft 3000K-6000K Tunable White LED Strip Lights, Dimmable Super Bright LED Tape Lights with 600 SMD 2835 LEDs | Lepro | SKU: 410087-DWW-US | For lighting chamber 1. https://www.lepro.com/32ft-dimmable-tunable-white-led-strip-lights.html |
3D printed 'spike bed' and 'chamber 2 floor' | Shapeways | N/A | Optional, for mechanical probes as an alternative to blunted map pins. |
70% ethanol | Various | N/A | To clean MCA between mice. |
Acryl-Hinge 2 | TAP Plastics | N/A | for attaching chamber lids to rear walls. https://www.tapplastics.com/product/plastics/handles_hinges_latches/acryl_hinge_2/122 |
Chemcast Cast Acrylic Sheet, Clear | TAP Plastics | N/A | 3mm thick. For front wall of chamber 1. https://www.tapplastics.com/product/plastics/cut_to_size_plastic/acrylic_sheets_cast_clear/510 |
Chemcast Cast Transparent Colored Acrylic, Transparent Dark Red - 50% | TAP Plastics | N/A | 3mm thick. 50% light transmission. For walls and lids of chambers 2 and 3. https://www.tapplastics.com/product/plastics/cut_to_size_plastic/acrylic_sheets_transparent_colors/519 |
Chemcast Translucent & Opaque Colored Cast Acrylic, Sign Opaque White - 0.1% | TAP Plastics | N/A | 3mm thick. For side walls and lid of chamber 1. https://www.tapplastics.com/product/plastics/cut_to_size_plastic/acrylic_sheets_color/341 |
Disinfectant (e.g. Quatricide) | Pharmacal Research Laboratories, Inc. | 65020F | To disinfect MCA at the end of a testing session. |
Dry-erase markers and board | Various | N/A | To add experimental info to the beginning of video footage. |
Map pins | Various | N/A | Optional, for mechanical probes. Use sandpaper to blunt sharp points before use. Can be used in place of 3D-printed parts. |
Paper towels | Various | N/A | To clean/disinfect MCA. |
SCIGRIP Weld-On #3 Acrylic Cement | TAP Plastics | N/A | For assembling acrylic sheets into chambers and affixing hinges. https://www.tapplastics.com/product/repair_products/plastic_adhesives/weld_on_3_cement/131 |
Stopwatch | Various | N/A | To record escape latencies/dwell times in real-time or from recorded video. |
Timer | Various | N/A | To ensure LED turn-on, barrier removal and test completion are timed consistently. |
Video camera | Various | HDRCX405 Handycam Camcorder | To record mouse behavior in the MCA device. Can be substituted with any consumer-grade video camera capable of 1080p resolution. |
Tripod | Famall | N/A | Any tripod that can hold the camera at bench height for recording MCA footage is acceptable. |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved