A subscription to JoVE is required to view this content. Sign in or start your free trial.
This methodology, which included oral feeding and intrathoracic injection infection, could effectively assess the influence of midgut and/or salivary gland barriers on arbovirus infection.
Mosquito-borne viruses (MBVs), which are infectious pathogens to vertebrates, are spread by many mosquito species, posing a severe threat to public health. Once ingested, the viruses must overcome the mosquito midgut barrier to reach the hemolymph, from where they might potentially spread to the salivary glands. When a mosquito bites, these viruses are spread to new vertebrate hosts. Similarly, the mosquito may pick up different viruses. In general, only a tiny portion of viruses may enter the salivary glands via the gut. The transmission efficiency of these viruses to the glands is be affected by the two physical barriers found in different mosquito species: midgut barriers and salivary glands barriers. This protocol presents a method for virus detection in salivary glands of Aedes aegypti's following oral feeding and intrathoracic injection infection. Furthermore, determining whether the guts and/or salivary glands hinder viral spread can aid in the risk assessments of MBVs transmitted by Aedes aegypti.
Mosquito-borne viruses (MBVs), a heterogeneous group of RNA viruses, can persist in mosquito vectors and subsequently spread to vertebrate hosts1. The clinically important MBVs are majorly distributed in four virus families, namely Flaviviridae, Togaviridae, Reoviridae, and Peribunyavividae2,3. In recent decades, these viruses have been reported all across the globe, causing public health issues. As one of the most well-known MBVs, Dengue virus (DENV) has become the most prevalent emerging or re-emerging arbovirus in over 100 countries during the last....
1. Preparation of viruses and mosquitoes
To examine EBIV distribution in the infected mosquitoes via artificial blood feeding (the viral final titer was 6.4 x 106 PFU/mL) and intrathoracic injection (the viral dose was 340 PFU), viral RNAs in saliva, heads, and guts of the mosquitoes at 10 days post infection (dpi) were determined.
For Ae. aegypti, virus titer of EBIV in the guts, heads, and saliva of the intrathoracically inoculated female mosquitoes were much higher than that in the oral-infected female.......
The goal of this method was to provide a comprehensive risk assessment of one mosquito-borne virus by evaluating vector competence through oral feeding and intrathoracic inoculation.
In the oral-feeding experiment, engorged-mosquitoes need to be picked out and transferred to a new container, posing a severe risk to the operators. The reason for this is because any mosquito, including uninfected mosquitoes, might be a source of infection19. Consequently, mosquitoes must .......
The authors have nothing to disclose.
This work was supported by the Wuhan Science and Technology Plan Project (2018201261638501).
....Name | Company | Catalog Number | Comments |
Aedes aegypti | Rockefeller strain | ||
Automated nucleic acid extraction system | NanoMagBio | S-48 | |
BHK-21 cells | National Virus Resource Center, Wuhan Institute of Virology | ||
Buckets | |||
C6/36 cells | National Virus Resource Center, Wuhan Institute of Virology | ||
Carbon dioxide spray gun | wuhan Yihong | YHDFPCO2 | |
Centrifugal machine | Himac | CF16RN | |
CFX96 Touch Real-Time PCR Detection System | Bio-Rad | CFX96 Touch | |
Ebinur Lake virus | Cu20-XJ isolation | ||
Formaldehyde | Wuhan Baiqiandu | B0003 | |
Glove box | |||
Glucose | Hushi | 10010518 | |
Immersion oil | Cargille | 16908-1 | |
Insect incubator | Memmert | HPP750T7 | |
Low Temperature Tissue Homogenizer Grinding Machine | Servicebio | KZ-III-F | |
Magnetic Virus Genome Extraction Kit | NanoMagBio | NMG0966-16 | |
mesh cages (30 x 30 x 30 cm) | Huayu | HY-35 | |
methylcellulose | Calbiochem | 17851 | |
mice feedstuff powder | BESSN | BS018 | |
Microelectrode Puller | WPI | PUL-1000 | PUL-1000 is a microprocessor controlled horizontal puller for making glass micropipettes or microelectrodes used in intracellular recording, patch clamp studies, microperfusion or microinjection. |
Mosquito net meshes | |||
Nanoject III Programmable Nanoliter Injector | Drummond | 3-000-207 | |
One Step TB Green PrimeScript PLUS RT-PCR Kit | Takara | RR096A | |
PBS, pH 7.4 | Gibco | C10010500BT | |
Penicillin/streptomycin | Gibco | 151140-122 | |
Petri dishes | |||
Plastic cupes (7 oz) | Hubei Duoanduo | ||
Plastic cups (24 oz) | Anhui shangji | PET32-Tub-1 | |
Plastic disposable droppers | Biosharp | BS-XG-O3L-NS | |
Refrigerator (-80 °C) | sanyo | MDF-U54V | |
Replacement Glass Capillaries | Drummond | 3-000-203-G/X | |
RPMI medium 1640 | Gibco | C11875500BT | |
Screw cap storage tubes (2 mL ) | biofil | FCT010005 | |
Shallow dishes | |||
Sponge | |||
Sterile defibrillated horse blood | Wuhan Purity Biotechnology | CDHXB413 | |
T75 culture flask | Corning | 430829 | |
The artificial mosquito feeding system | Hemotek | Hemotek PS6 | |
The dissecting microscope | ZEISS | stemi508 | |
The ice plates | |||
The mosquito absorbing machine | Ningbo Bangning | ||
The pipette tips | Axygen | TF | |
Trypsin-EDTA (0.25%) | Gibco | 25200056 | |
Tweezers | Dumont | 0203-5-PO |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved