A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This work describes a protocol for a multicopy suppressor genetic screen in Schizosaccharomyces pombe. This screen uses a genome-wide plasmid library to identify suppressor clone(s) of a loss-of-function phenotype associated with a query mutant strain. Novel genetic suppressors of the ell1 null mutant were identified using this screen.
Identification of genetic interactions is a powerful tool to decipher the functions of gene(s) by providing insights into their functional relationships with other genes and organization into biological pathways and processes. Although the majority of the genetic screens were initially developed in Saccharomyces cerevisiae, a complementary platform for carrying out these genetic screens has been provided by Schizosaccharomyces pombe. One of the common approaches used to identify genetic interactions is by overexpression of clones from a genome-wide, high-copy-number plasmid library in a loss-of-function mutant, followed by selection of clones that suppress the mutant phenotype.
This paper describes a protocol for carrying out this 'multicopy suppression'-based genetic screen in S. pombe. This screen has helped identify multicopy suppressor(s) of the genotoxic stress-sensitive phenotype associated with the absence of the Ell1 transcription elongation factor in S. pombe. The screen was initiated by transformation of the query ell1 null mutant strain with a high-copy-number S. pombe cDNA plasmid library and selecting the suppressors on EMM2 plates containing 4-nitroquinoline 1-oxide (4-NQO), a genotoxic stress-inducing compound. Subsequently, plasmid was isolated from two shortlisted suppressor colonies and digested by restriction enzymes to release the insert DNA. Plasmids releasing an insert DNA fragment were retransformed into the ell1 deletion strain to confirm the ability of these suppressor plasmid clones to restore growth of the ell1 deletion mutant in the presence of 4-NQO and other genotoxic compounds. Those plasmids showing a rescue of the deletion phenotype were sequenced to identify the gene(s) responsible for suppression of the ell1 deletion-associated genotoxic stress-sensitive phenotype.
Networks of genetic interactions provide functional information about genes and delineate pathways and biological processes that these genes may be involved in in vivo. In addition, they may also provide insights into how different genes interact with one another, resulting in a specific phenotype1,2,3. Over the years, a variety of genetic screens have been designed by researchers to answer fundamental biological questions and study human diseases. Screens for the identification of genetic interactions can be performed in multiple ways. Genetic interactions identifie....
1. Transformation of the cDNA library into the query S. pombe mutant strain to screen for multicopy suppressors
NOTE: The Standard Lithium-Acetate method27 was followed to transform the S. pombe cDNA library into the query S. pombe ell1Δ strain with a few modifications:
Screening for multicopy suppressor(s) of ell1 deletion-associated genotoxic stress sensitivity in S. pombe
We performed the genetic screen using the protocol described above to identify multicopy suppressors of the loss-of-function phenotype of the query ell1 deletion mutant strain. The growth-related sensitivity of the ell1 deletion strain observed in the presence of the 4-NQO genotoxic agent was adopted as the .......
Yeasts have been widely used to investigate the basic biological processes and pathways that are evolutionarily conserved across eukaryotic organisms. The availability of genetic and genomic tools along with their amenability to various biochemical, genetic, and molecular procedures make yeasts an excellent model organism for genetic research34,35,36. Over the years, various genetic screens have been designed by yeast researcher.......
This work was funded by a research grant from the Department of Biotechnology, Government of India (Grant No. BT/PR12568/BRB/10/1369/2015) to Nimisha Sharma. The authors thank Prof. Charles Hoffman (Boston College, USA) for the gift of the S. pombe cDNA library and Prof. Susan Forsburg for the yeast plasmids.
....Name | Company | Catalog Number | Comments |
4-NQO | Sigma | N8141 | |
Acetic Acid, glacial | Sigma | 1371301000 | |
Adenine Sulphate | Himedia | GRM033 | |
Agar | Himedia | GRM026 | |
Agarose | Lonza | 50004L | |
Ammonium Chloride | Himedia | MB054 | |
BamHI | Fermentas | ER0051 | |
Biotin | Himedia | RM095 | |
Boric Acid | Himedia | MB007 | |
Calcium Chloride | Sigma | C4901 | |
Chloroform:Isoamyl alcohol 24:1 | Sigma | C0549 | |
Citric Acid | Himedia | RM1023 | |
Disodium hydrogen phospahte anhydrous | Himedia | GRM3960 | |
single stranded DNA from Salmon testes | Sigma | D7656 | |
EDTA disodium | Sigma | 324503 | |
Ferric Chloride Hexahydrate | Himedia | RM6353 | |
Glucose | Amresco | 188 | |
Ionositol | Himedia | GRM102 | |
Isopropanol | Qualigen | Q26897 | |
Leucine | Himedia | GRM054 | |
Lithium Acetatae | Sigma | 517992 | |
Magnesium Chloride Hexahydrate | Himedia | MB040 | |
Molybdic Acid | Himedia | RM690 | |
Nicotinic Acid | Himedia | CMS177 | |
PEG, MW 4000 | Sigma | 81240 | |
Pentothinic Acid | Himedia | TC159 | |
Phenol | Himedia | MB082 | |
Plasmid Extraction Kit | Qiagen | 27104 | |
Potassium Chloride | Sigma | P9541 | |
Potassium hydrogen Pthallate | Merc | DDD7D670815 | |
Potassium iodide | Himedia | RM1086 | |
RNAse | Fermentas | EN0531 | |
SDS | Himedia | GRM205 | |
Sodium Hydroxide | Himedia | GRM1183 | |
Sodium Sulphate | Himedia | RM1037 | |
Tris free Base | Himedia | MB209 | |
Uracil | Himedia | GRM264 | |
Yeast Extract Powder | Himedia | RM668 | |
Zinc Sulphate Heptahydrate | Merc | DJ9D692580 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved