A subscription to JoVE is required to view this content. Sign in or start your free trial.
The protocol demonstrates that by performing microtransplantation of synaptic membranes into Xenopus laevis oocytes, it is possible to record consistent and reliable responses of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and γ-aminobutyric acid receptors.
Excitatory and inhibitory ionotropic receptors are the major gates of ion fluxes that determine the activity of synapses during physiological neuronal communication. Therefore, alterations in their abundance, function, and relationships with other synaptic elements have been observed as a major correlate of alterations in brain function and cognitive impairment in neurodegenerative diseases and mental disorders. Understanding how the function of excitatory and inhibitory synaptic receptors is altered by disease is of critical importance for the development of effective therapies. To gain disease-relevant information, it is important to record the electrical activity of neurotransmitter receptors that remain functional in the diseased human brain. So far this is the closest approach to assess pathological alterations in receptors' function. In this work, a methodology is presented to perform microtransplantation of synaptic membranes, which consists of reactivating synaptic membranes from snap frozen human brain tissue containing human receptors, by its injection and posterior fusion into the membrane of Xenopus laevis oocytes. The protocol also provides the methodological strategy to obtain consistent and reliable responses of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and γ-aminobutyric acid (GABA) receptors, as well as novel detailed methods that are used for normalization and rigorous data analysis.
Neurodegenerative disorders affect a large percentage of the population. Although their devastating consequences are well known, the link between the functional alterations of neurotransmitter receptors, which are critical for brain function, and their symptomatology is still poorly understood. Inter-individual variability, chronic nature of the disease, and insidious onset of symptoms are just some of the reasons that have delayed the understanding of the many brain disorders where chemical imbalances are well documented1,2. Animal models have generated invaluable information and expanded our knowledge about ....
All research is performed in compliance with institutional guidelines and approved by the institutional Animal Care and Use Committee of the University of California Irvine (IACUC-1998-1388) and the University of Texas Medical Branch (IACUC-1803024). Temporal cortex from a non-Alzheimer's disease (AD) brain (female, 74 years old, postmortem interval 2.8 h) and an AD-brain (female, 74 years old, postmortem interval 4.5 h) were provided by the University of California Irvine Alzheimer's disease research center (UCI.......
Within a few hours after injection, the synaptic membranes, carrying their neurotransmitter receptors and ion channels, begin to fuse with the oocyte plasma membrane. Figure 1 shows recordings of AMPA and GABAA receptors microtransplanted into Xenopus oocytes. For most of the analysis, the responses from two or three oocytes per sample were measured, using two or three batches of oocytes from different frogs, for a total of six to nine oocytes per sample. This is done for.......
Analysis of native protein complexes from human brains is needed to understand homeostatic and pathological processes in brain disorders and develop therapeutic strategies to prevent or treat diseases. Thus, brain banks containing snap frozen samples are an invaluable source of a large and mostly untapped wealth of physiological information29,30. An initial concern to use postmortem tissue is the clear possibility of mRNA or protein degradation that may confound .......
This work was supported by NIA/NIH grants R01AG070255 and R01AG073133 to AL. We also thank University of California Irvine Alzheimer's disease research center (UCI-ADRC) for providing the human tissue shown in this manuscript. The UCI-ADRC is funded by NIH/NIA grant P30 AG066519.
....Name | Company | Catalog Number | Comments |
For Microinjection | |||
3.5" Glass Capillaries | Drummond | 3-000-203-G/X | |
24 well, flat bottom Tissue Culture Plate | Thermofisher | FB012929 | |
Flaming/Brown type micropipette puller | Sutter | P-1000 | |
Injection Dish | Thermofisher | 08-772B | |
Microcentrifuge Tubes | Thermofisher | 02-682-002 | |
Mineral Oil | Thermofisher | O121-1 | |
Nanoject II | Drummond | 3-000-204 | |
Nylon mesh | Industrial Netting | WN0800 | |
Parafilm | Thermofisher | S37440 | |
Stereoscope | Fisher Scientific | 03-000-037 | |
Syringe | Thermofisher | 14-841-31 | |
Ultrasonic cleaning bath | Thermofisher | FS20D | |
Xenopus laevis frogs | Xenopus 1 | 4217 | |
For Two Electrode Voltage clamp | |||
15 cm long fire polished borosilicate glass capillaries | Sutter | B200-116-15 | |
Any PC computer or laptop | |||
Low-pass Bessel Filter | Warner Instruments | LPF-8 | |
Stereoscope | Fisher Scientific | 03-000-037 | |
Two electrode voltage clamp workstation | Warner Instruments | TEV-700 | |
ValveLink 8.2 Perfusion Controller | Automate Scientific | SKU:01-18 | |
WInEDR Free software | University of Strathclyde Glasgow | https://spider.science.strath.ac.uk/sipbs/software_ses.htm | |
X Series Multifunction DAQ | National Instruments | NI USB-6341 | |
Reagents | |||
Calcium dichloride | Thermofisher | C79 | |
Calcium nitrate tetrahydrate | Thermofisher | C109 | |
Collagenase | Sigma-Aldrich | C0130 | |
GABA | Sigma-Aldrich | A2129 | |
HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) | Thermofisher | BP310 | |
Kainic acid | Tocris | 0222 | |
Magnesium sulfate heptahydrate | Thermofisher | M63 | |
Potassium chloride | Thermofisher | P217 | |
Sodium bicarbonate | Thermofisher | S233 | |
Sodium chloride | Thermofisher | S271-1 | |
Ultrafree-0.1 µm MC filter, | Amicon |
Explore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved