A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
The present protocol describes an optimized hematopoietic stem and progenitor cell (HSPC) culture procedure for the robust engraftment of gene-edited cells in vivo.
CRISPR/Cas9 is a highly versatile and efficient gene-editing tool adopted widely to correct various genetic mutations. The feasibility of gene manipulation of hematopoietic stem and progenitor cells (HSPCs) in vitro makes HSPCs an ideal target cell for gene therapy. However, HSPCs moderately lose their engraftment and multilineage repopulation potential in ex vivo culture. In the present study, ideal culture conditions are described that improves HSPC engraftment and generate an increased number of gene-modified cells in vivo. The current report displays optimized in vitro culture conditions, including the type of culture media, unique small molecule cocktail supplementation, cytokine concentration, cell culture plates, and culture density. In addition to that, an optimized HSPC gene-editing procedure, along with the validation of the gene-editing events, are provided. For in vivo validation, the gene-edited HSPCs infusion and post-engraftment analysis in mouse recipients are displayed. The results demonstrated that the culture system increased the frequency of functional HSCs in vitro, resulting in robust engraftment of gene-edited cells in vivo.
The inaccessibility to human leukocyte antigen (HLA)-matched donors in allogenic transplantation settings and the rapid development of highly versatile and safe genetic engineering tools make autologous hematopoietic stem cell transplantation (HSCT) a curative treatment strategy for the hereditary blood disorders1,2. Autologous hematopoietic stem and progenitor cell (HSPC) gene therapy involves the collection of patients' HSPCs, genetic manipulation, correction of disease-causing mutations, and transplantation of gene-corrected HSPCs into the patient3,4. However, the successful outcome of the gene therapy relies on the quality of the transplantable gene-modified graft. The gene manipulation steps and ex vivo culture of HSPCs affect the quality of the graft by decreasing the frequency of long-term hematopoietic stem cells (LT-HSCs), necessitating the infusion of large doses of gene-manipulated HSPCs2,5,6.
Several small molecules, including SR1 and UM171, are currently being employed to expand cord blood HSPCs robustly7,8. For adult HSPCs, due to the higher cell yield obtained on mobilization, robust expansion is not required. However, retaining the stemness of isolated HSPCs in ex vivo culture is crucial for its gene therapy applications. Therefore, an approach focusing on the culture enrichment of hematopoietic stem cells (HSCs) is developed using a combination of small molecules: Resveratrol, UM729, and SR1 (RUS)7. The optimized HSPC culture conditions promote the enrichment of HSCs, resulting in increased frequency of gene-modified HSCs in vivo, and reduce the need for gene manipulating large doses of HSPCs, facilitating cost-effective gene therapy approaches8.
Here, a comprehensive protocol for HSPCs culture is described, along with the infusion and analysis of gene-edited cells in vivo.
In vivo experiments on immunodeficient mice were approved by and performed following the guidelines of the Institute Animal Ethics Committee (IAEC), Christian Medical College, Vellore, India. Granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood samples were collected from healthy human donors with informed consent after obtaining Institutional Review Board (IRB) approval.
1. Isolation of peripheral blood mononuclear cells (PBMNCs) and purification of CD34 + cells
2. In vitro culture of purified HSPCs
3. Gene editing of HSPCs
4. Validation of gene-editing events in HSPCs
5. Transplantation of gene-edited HSPCs
6. Assessment of short-term engraftment potential
7. Assessment of long-term engraftment potential
8. Immunophenotyping
9. Assessment of gene-editing frequency in engrafted bone marrow mononuclear cells
The present study identifies ideal HSPC culture conditions that facilitate the retention of CD34+CD133+CD90+ HSCs in ex vivo culture. To demonstrate the culture enrichment of HSCs along with the enhanced generation of gene-modified HSCs, the optimized procedures for PBMNC isolation, CD34+ cell purification, culture, gene editing, transplantation, characterization of engraftment, and gene-modified cells in vivo are provided (Figure 1
The successful outcome of HSPC gene therapy relies predominantly on the quality and quantity of engraftable HSCs in the graft. However, the functional properties of HSCs are highly affected during the preparatory phase of gene therapy products, including by in vitro culture and toxicity associated with the gene manipulation procedure. To overcome these limitations, we have identified ideal HSPCs culture conditions that retain the stemness of CD34+CD133+CD90+ HSCs in ex v...
The authors declare that no competing financial interests exist.
The authors want to acknowledge the staff of the flow cytometry facility and animal facility of CSCR. A. C. is funded by an ICMR-SRF fellowship, K. V. K. is funded by a DST-INSPIRE fellowship, and P. B. is funded by a CSIR-JRF fellowship. This work was funded by the Department of Biotechnology, Government of India (grant no. BT/PR26901/MED/31/377/2017 and BT/PR31616/MED/31/408/2019)
Name | Company | Catalog Number | Comments |
4D-Nucleofector® X Unit | LONZA BIOSCIENCE | AAF-1003X | |
4D-Nucleofector™ X Kit ( 16-well Nucleocuvette™ Strips) | LONZA BIOSCIENCE | V4XP-3032 | |
Antibiotic-Antimycotic (100X) | THERMO SCIENTIFIC | 15240096 | |
Anti-human CD45 APC | BD BIOSCIENCE | 555485 | |
Anti-human CD13 PE | BD BIOSCIENCE | 555394 | |
Anti-human CD19 PerCP | BD BIOSCIENCE | 340421 | |
Anti-human CD3 PE-Cy7 | BD BIOSCIENCE | 557749 | |
Anti-human CD90 APC | BD BIOSCIENCE | 561971 | |
Anti-human CD133/1 | Miltenyibiotec | 130-113-673 | |
Anti-human CD34 PE | BD BIOSCIENCE | 348057 | |
Anti-mouse CD45.1 PerCP-Cy5 | BD BIOSCIENCE | 560580 | |
Blood Irradator-2000 | BRIT (Department of Biotechnology, India) | BI 2000 | |
Cell culture dish (delta surface-treated 6-well plates) | NUNC (THERMO SCIENTIFIC) | 140675 | |
CrysoStor CS10 | BioLife solutions | #07952 | |
Busulfan | CELON LABS (60mg/10mL) | - | |
Guide-it Recombinant Cas9 | TAKARA BIO | 632640 | |
Cas9-eGFP | SIGMA | C120040 | |
Centrifuge tube-15ml | CORNING | 430790 | |
Centrifuge tube-50ml | NUNC (THERMO SCIENTIFIC) | 339652 | |
DMSO | MPBIO | 219605590 | |
DNAase | STEMCELL TECHNOLOGIES | 6469 | |
Dulbecco′s Phosphate Buffered Saline- 1X | HYCLONE | SH30028.02 | |
EasySep™ Human CD34 Positive Selection Kit II | STEMCELL TECHNOLOGIES | 17856 | |
EasySep magnet | STEMCELL TECHNOLOGIES | 18000 | |
Electrophoresis unit | ORANGE INDIA | HDS0036 | |
FBS | THERMO SCIENTIFIC | 10270106 | |
Flow cytometer – ARIA III | BD BIOSCIENCE | - | |
FlowJo | BD BIOSCIENCE | - | |
Flt3-L | PEPROTECH | 300-19-1000 | |
Gel imaging system | CELL BIOSCIENCES | 11630453 | |
HighPrep DTR reagent | MAGBIOGENOMICS | DT-70005 | |
Human BD Fc Block | BD BIOSCIENCE | 553141 | |
IL6 | PEPROTECH | 200-06-50 | |
IMDM media | THERMO SCIENTIFIC | 12440053 | |
Infrared lamp | MURPHY | - | |
Insulin syringe 6mm 31G | BD BIOSCIENCE | 324903 | |
Ketamine | KETMIN 50 | - | |
Loading dye 6X | TAKARA BIO | 9156 | |
Lymphoprep | STEMCELL TECHNOLOGIES | 7851 | |
Mice Restrainer | AVANTOR | TV-150 | |
Nano drop spectrophotometer | THERMO SCIENTIFIC | ND-2000C | |
Neubauer cell counting chamber | ROHEM INSTRUMENTS | CC-3073 | |
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) | The Jackson Laboratory | RRID:IMSR_JAX:005557 | |
NOD,B6.SCID Il2rγ−/−KitW41/W41 (NBSGW) | The Jackson Laboratory | RRID:IMSR_JAX:026622 | |
Nunc delta 6-well plate | THERMO SCIENTIFIC | 140675 | |
Polystyrene round-bottom tube | BD | 352008 | |
P3 primary cell Nucleofection solution | LONZA BIOSCIENCE | PBP3-02250 | |
Pasteur pipette | FISHER SCIENTIFIC | 13-678-20A | |
PCR clean-up kit | TAKARA BIO | 740609.25 | |
Mouse Pie Cage | FISCHER SCIENTIFIC | 50-195-5140 | |
polystyrene round-bottom tube (12 x 75 mm) | STEMCELL TECHNOLOGIES | 38007 | |
Primer3 | Whitehead Institute for Biomedical Research | https://primer3.ut.ee/ | |
QuickExtract™ DNA Extraction Solution | Lucigen | QE09050 | |
Reserveratrol | STEMCELL TECHNOLOGIES | 72862 | |
SCF | PEPROTECH | 300-07-1000 | |
SFEM-II | STEMCELL TECHNOLOGIES | 9655 | |
sgRNA | SYNTHEGO | - | |
SPINWIN | TARSON | 1020 | |
StemReginin 1 | STEMCELL TECHNOLOGIES | 72342 | |
ICE analysis tool | SYNTHEGO | https://ice.synthego.com/ | |
Tris-EDTA buffer solution (TE) 1X | SYNTHEGO | Supplied with gRNA | |
Thermocycler | APPLIED BIOSYSTEMS | 4375305 | |
TPO | PEPROTECH | 300-18-1000 | |
Trypan blue | HIMEDIA LABS | TCL046 | |
UM171 | STEMCELL TECHNOLOGIES | 72914 | |
UM729 | STEMCELL TECHNOLOGIES | 72332 | |
Xylazine | XYLAXIN - INDIAN IMMUNOLOGICALS LIMITED | - |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved