A subscription to JoVE is required to view this content. Sign in or start your free trial.
Mouse cardiac transplantation models represent valuable research tools for studying transplantation immunology. The present protocol details mouse heterotopic cervical cardiac transplantation that involves the placement of cuffs on the recipient's common carotid artery and the donor's pulmonary artery trunk to allow for laminar blood flow.
Murine models of cardiac transplantation are frequently utilized to study ischemia-reperfusion injury, innate and adaptive immune responses after transplantation, and the impact of immunomodulatory therapies on graft rejection. Heterotopic cervical heart transplantation in mice was first described in 1991 using sutured anastomoses and subsequently modified to include cuff techniques. This modification allowed for improved success rates, and since then, there have been multiple reports that have proposed further technical improvements. However, translation into more widespread utilization remains limited due to the technical difficulty associated with graft anastomoses, which requires precision to achieve adequate length and caliber of the cuffs to avoid vascular anastomotic twisting or excessive tension, which can result in damage to the graft. The present protocol describes a modified technique for performing heterotopic cervical cardiac transplantation in mice which involves cuff placement on the recipient's common carotid artery and the donor's pulmonary artery in alignment with the direction of the blood flow.
Abbott et al. published1 the first description of heterotopic abdominal heart transplantation in rats in 1964. These surgical techniques were refined and simplified by Ono et al. in 19692. Corry et al. first described a method for heterotopic abdominal heart transplantation in mice in 1973; similar to the previously reported rat models, this involved engraftment into the host's abdomen with revascularization by end-to-side anastomoses of the donor's pulmonary artery and ascending aorta to the recipient's inferior vena cava and abdominal aorta, respectively3. Heterotopic cervical heart ....
All animal handling procedures were conducted in compliance with the NIH Care and Use of Laboratory Animals guidelines and approved by the Animal Studies Committee at Washington University School of Medicine. Hearts from C57BL/6 (B6) and BALB/c mice (weighing 20-25 g) were transplanted into gender-matched B6 recipients (6-8 weeks of age). The mice were obtained from commercial sources (see Table of Materials). Syngeneic transplants were performed to evaluate cellular responses related to ischemia-reperfu.......
This mouse cervical heterotopic cardiac transplantation model has been utilized to perform over 1,000 transplants in our laboratory, with a survival rate of approximately 97%. The success rate is slightly higher than previous reports using other cervical heterotopic heart transplantation techniques in mice10,11,20. This could potentially be attributed to the larger 20 G cuff placed on the donor pulmonary artery to ensure ample r.......
Utilizing this technique, mouse heterotopic cervical cardiac transplantation can be performed in less than 40 min by an experienced microsurgeon and in approximately 60 min by an entry-level microsurgeon. While cervical heart transplantation has been studied in numerous animal models, a mouse model remains the gold standard due to multiple well-defined genetic strains, genetic alteration capabilities, and the availability of numerous reagents, including monoclonal antibodies24. The technique descr.......
DK is supported by National Institutes of Health grants 1P01AI116501, R01HL094601, R01HL151078, Veterans Administration Merit Review grant 1I01BX002730, and The Foundation for Barnes-Jewish Hospital.
....Name | Company | Catalog Number | Comments |
6-0 braided silk ties | Henry Schein Inc | 7718729 | |
0.75% Providone iosine scrub | Priority Care Inc | NDC 57319-327-0 | |
10-0 nylon suture | Surgical Specialties Corporation | AK-0106 | |
655-nm nontargeted Q-dots | Invitrogen | Q21021MP | |
70% Ethanol | Pharmco Products Inc | 111000140 | |
8-0 braided silk ties | Henry Schein Inc | 1005597 | |
Adson forceps | Fine Science Tools Inc | 91127-12 | |
BALB/c and C57BL/6 mice (6-8 weeks) | Jackson Laboratories | ||
Bipolar coagulator | Valleylab Inc | SurgII-20, E6008/E6008B | |
Carprofen (Rimadyl) injection | Transpharm | 35844 | |
Carprofen (Rimadyl) oral chewable tablet | Transpharm | 38995/37919 | |
Custom-built 2P microscope running ImageWarp acquisition software | A&B Software | ||
Dumont no. 5 forceps | Fine Science Tools Inc | 11251-20 | |
Fine vannas style spring scissors | Fine Science Tools Inc | 15000-03 | |
GraphPad Prism 5.0 | Sun Microsystems Inc. | ||
Halsey needle holder | Fine Science Tools Inc | 91201-13 | |
Halsted-Mosquito clamp curved tip | Fine Science Tools Inc | 91309-12 | |
Harvard Apparatus mouse ventilator model 687 | Harvard Apparatus | MA1 55-0001 | |
Heparin solution (100 U/mL) | Abraxis Pharmaceutical Products | 504031 | |
Imaris | Bitplane | ||
Ketamine (50 mg/kg) | Wyeth | 206205-01 | |
Microscope—Leica Wild M651 × 6–40 magnification | Leica Microsystems | ||
Moria extra fine spring scissors | Fine Science Tools Inc | 15396-00 | |
Ohio isoflurane vaporizer | Parkland Scientific | V3000i | |
Qdots | ThermoFisher | 1604036 | |
S&T SuperGrip Forceps angled tip | Fine Science Tools Inc | 00649-11 | |
S&T SuperGrip Forceps straight tip | Fine Science Tools Inc | 00632-11 | |
Sterile normal saline (0.9% (wt/vol) sodium chloride | Hospira Inc | NDC 0409-4888-20 | |
Sterile Q-tips (tapered mini cotton tipped 3-inch applicators) | Puritan Medical Company LLC | 823-WC | |
Surflow 20 gauge 1/4-inch Teflon angiocatheter | Terumo Medical Corporation | SR-OX2032CA | |
Surflow 24 gauge 3/4-inch Teflon angiocatheter | Terumo Medical Corporation | R-OX2419CA | |
ThermoCare Small Animal ICU System (recovery settings 3 L/min O2, 80 °C, 40% humidity) | Thermocare Inc | ||
VetBond | Santa Cruz Biotechnology SC361931 | NC0846393 | |
Xylazine (10 mg/kg) | Lloyd Laboratories | 139-236 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved