A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Presented here is a protocol for the preparation and buffer calibration of cell extracts from exonuclease V knockout strains of Escherichia coli BL21 Rosetta2 (ΔrecBCD and ΔrecB). This is a fast, easy, and direct approach for expression in cell-free protein synthesis systems using linear DNA templates.
Cell-free protein synthesis (CFPS) has recently become very popular in the field of synthetic biology due to its numerous advantages. Using linear DNA templates for CFPS will further enable the technology to reach its full potential, decreasing the experimental time by eliminating the steps of cloning, transformation, and plasmid extraction. Linear DNA can be rapidly and easily amplified by PCR to obtain high concentrations of the template, avoiding potential in vivo expression toxicity. However, linear DNA templates are rapidly degraded by exonucleases that are naturally present in the cell extracts. There are several strategies that have been proposed to tackle this problem, such as adding nuclease inhibitors or chemical modification of linear DNA ends for protection. All these strategies cost extra time and resources and are yet to obtain near-plasmid levels of protein expression. A detailed protocol for an alternative strategy is presented here for using linear DNA templates for CFPS. By using cell extracts from exonuclease-deficient knockout cells, linear DNA templates remain intact without requiring any end-modifications. We present the preparation steps of cell lysate from Escherichia coli BL21 Rosetta2 ΔrecBCD strain by sonication lysis and buffer calibration for Mg-glutamate (Mg-glu) and K-glutamate (K-glu) specifically for linear DNA. This method is able to achieve protein expression levels comparable to that from plasmid DNA in E. coli CFPS.
Cell-free protein synthesis (CFPS) systems are increasingly being used as a fast, simple, and efficient method for biosensor engineering, decentralized manufacturing, and prototyping of genetic circuits1. Due to their great potential, CFPS systems are used regularly in the field of synthetic biology. However, so far CFPS systems rely on circular plasmids that can limit the technology from reaching its full potential. Preparing plasmid DNA depends on many time-consuming steps during cloning and large amounts of DNA isolation. On the other hand, PCR amplification from a plasmid, or a synthesized DNA template, can be used to simply prepa....
1. Media and buffer preparation
Representative results are shown here after calibration of the lysate for optimal Mg-glutamate and K-glutamate levels separately for linear and plasmid DNA (Figure 1). The Mg-glutamate optimal concentration is similar across ΔrecB and ΔrecBCD extracts at 8 mM (Figure 1B). However, the optimal K-glutamate concentration for plasmid DNA is 140 mM, whereas the optimal K-glutamate concentration for linear DNA for the same extract is 2.......
Here, we show that cell lysate prepared from E. coli BL21 Rosetta2 with a genomic knockout for either recB or recBCD operon supports high protein expression from linear DNA templates. This protocol elaborates a step-by-step lysate calibration procedure specific for linear DNA templates (Figure 2), which is a critical step that leads to the high expression from σ70 promoters in linear DNA, reaching near-plasmid levels for equimolar DNA concentrations. This prot.......
ACB and JLF acknowledge funding support by the ANR SINAPUV grant (ANR-17-CE07-0046). JLF and JB acknowledge funding support by the ANR SynBioDiag grant (ANR-18-CE33-0015). MSA and JLF acknowledge funding support by the ANR iCFree grant (ANR-20-BiopNSE). JB acknowledges support from the ERC starting "COMPUCELL" (grant number 657579). The Centre de Biochimie Structurale acknowledges support from the French Infrastructure for Integrated Structural Biology (FRISBI) (ANR-10-INSB-05-01). MK acknowledges funding support from INRAe's MICA department, Université Paris-Saclay, Ile-de-France (IdF) region's DIM-RFSI, and ANR DREAMY (ANR-21-CE48-003). Thi....
Name | Company | Catalog Number | Comments |
2-YT Broth | Invitrogen | 22712020 | |
1.5 mL Safe-Lock tubes | Eppendorf | 30120086 | 1.5 mL microtube |
384-well square-bottom microplate | Thermo Scientific Nunc | 142761 | |
3PGA (D-(-)-3-Phosphoglyceric acid disodium) | Sigma-Aldrich | P8877 | |
adhesive plate seal | Thermo Scientific Nunc | 232701 | |
Agar | Invitrogen | 30391023 | |
ATP (Adenosine 5'-triphosphate disodium salt hydrate) | Sigma-Aldrich | A8937 | |
BL21 Rosetta2 | Merck Millipore | 71402 | |
BL21 Rosetta2 ΔrecB | Addgene | 176582 | |
BL21 Rosetta2 ΔrecBCD | Addgene | 176583 | |
cAMP (Adenosine 3' 5'-cyclic monophosphate) | Sigma-Aldrich | A9501 | |
Chloramphenicol | Sigma-Aldrich | C0378 | |
CoA (Coenzyme A hydrate) | Sigma-Aldrich | C4282 | |
Corning 15 mL PP Centrifuge Tubes, Rack Packed with CentriStar Cap, Sterile | Corning | 430790 | 15 mL tube |
Corning 50 mL PP Centrifuge Tubes, Conical Bottom with CentriStar Cap, Sterile | Corning | 430828 | 50 mL tube |
CTP (Cytidine 5'-triphosphate, disodium salt hydrate) | Alfa Aesar | J62238 | |
DpnI | NEB | R0176S | |
DTT (DL-Dithiothreitol) | Sigma-Aldrich | D0632 | |
Folinic acid (solid folinic acid calcium salt) | Sigma-Aldrich | F7878 | |
GTP (Guanosine 5ʹ-Triphosphate, Disodium Salt) | Sigma-Aldrich | 371701 | |
HEPES | Sigma-Aldrich | H3375 | |
K phosphate dibasic (K2HPO4) | Carl Roth | 231-834-5 | |
K phosphate monobasic (H2KO4P) | Sigma-Aldrich | P5655 | |
K-glutamate | Alfa Aesar | A17232 | |
Mg-glutamate | Sigma-Aldrich | 49605 | |
Millex-GP Syringe Filter Unit, 0.22 µm, polyethersulfone | Merck Millipore | SLGP033RB | membrane filter 0.22 µm |
Monarch PCR & DNA Cleanup Kit | NEB | T1030S | PCR & DNA cleanup Kit |
Monarch Plasmid Miniprep Kit | NEB | T1010S | Plasmid Miniprep Kit |
NAD (B-nicotinamide adenine dinucleotide hydrate) | Sigma-Aldrich | N6522 | |
NIST-traceable FITC standard | Invitrogen | F36915 | NIST-FITC |
NucleoBond Xtra Maxi kit | Macherey-Nagel | 740414.1 | Plasmid Maxiprep Kit |
PEG 8000 | Sigma-Aldrich | 89510 | |
plate reader | Biotek | Synergy HTX | |
Purified Recombinant EGFP Protein | Chromotek | egfp-250 | recombinant eGFP |
Q5 High-Fidelity 2X Master Mix | NEB | M0492S | DNA polymerase |
Q5 High-Fidelity 2X Master Mix | New England Biolabs | M0492L | DNA polymerase |
Qubit dsDNA BR Assay Kit | Thermo | Q32850 | fluorometric assay with DNA-binding dye |
RTS Amino Acid Sampler | biotechrabbit | BR1401801 | |
Spermidine | Sigma-Aldrich | 85558 | |
Sterile water | Purified water from the Millipore RiOs 8 system, sterilized by autoclaving. | ||
Tris base | Life Science products Cytiva | 17-1321-01 | |
tRNA | Roche | 10109550001 | |
Ultrasonic processor Vibra cell VC-505 | SONICS | VC505 | sonicator |
UTP Na3 (Uridine 5'- triphosphate, trisodium salt hydrate) | Acros Organics | 226310010 | |
Water, nuclease-free | Thermo | R0581 | nuclease-free water |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved