A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, zebrafish (Danio rerio) is used as a model to study allergic reactions and immune responses related to alpha-Gal syndrome (AGS) by evaluating allergic reactions to tick saliva and mammalian meat consumption.
Ticks are arthropod vectors that cause disease by pathogen transmission and whose bites could be related to allergic reactions impacting human health worldwide. In some individuals, high levels of immunoglobulin E antibodies against the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) have been induced by tick bites. Anaphylactic reactions mediated by glycoproteins and glycolipids containing the glycan α-Gal, present in tick saliva, are related to alpha-Gal syndrome (AGS) or mammalian meat allergy. Zebrafish (Danio rerio) has become a widely used vertebrate model for the study of different pathologies. In this study, zebrafish was used as a model for the study of allergic reactions in response to α-Gal and mammalian meat consumption because, like humans, they do not synthesize this glycan. For this purpose, behavioral patterns and hemorrhagic anaphylactic-type allergic reactions in response to Ixodes ricinus tick saliva and mammalian meat consumption was evaluated. This experimental approach allows the obtention of valid data that support the zebrafish animal model for the study of tick-borne allergies including AGS.
Ticks are vectors of pathogens that cause diseases and are also the cause of allergic reactions, affecting the health of humans and animals worldwide1,2. During tick feeding, biomolecules in tick saliva, especially proteins and lipids, facilitate the feeding of these ectoparasites, avoiding host defenses3. Some saliva biomolecules with glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) modifications lead to the production of high anti-α-Gal IgE antibody levels after the tick bite, only in some individuals, which is known as α-Gal Syndrome (AGS)4. This is a disease associated with IgE-mediated allergy that may result in anaphylaxis to tick bites, non-primate mammalian meat consumption, and some drugs such as cetuximab5. Reactions to α-Gal are often severe and sometimes could be fatal6,7,8,9,10,11,12,13,14,15.
The α-Gal is found in all mammals except for Old World monkeys, apes, and humans that do not have the ability to synthesize α-Gal13. However, pathogens such as bacteria and protozoa express this glycan on their surface, which can induce the production of high amounts of anti-α-Gal IgM/IgG antibodies and may be a protective mechanism against these pathogens16,17. However, the production of anti-α-Gal antibodies increases the risk of developing IgE-mediated anti-α-Gal allergies7,13. Natural anti-α-Gal antibodies produced in humans, mainly of the IgM/IgG subtypes, could be associated with this modification present in bacteria from the gut microbiota16. AGS can be a challenging clinical diagnosis, as the main diagnostic method at the moment is based on a clinical history of delayed allergic reactions, especially associated with food allergies (i.e., pruritus, localized hives, or recurrent angioedema to anaphylaxis, urticaria, and gastrointestinal symptoms) and the measurement of IgE anti-α-Gal antibody levels9. Current findings suggest tick bites constitute one of the principal risks in the appearance of AGS18,19, a 20-fold or greater increase in IgE levels to α-Gal following a tick bite19, a history of tick bites in patients with AGS20,21,22, the existence of antibodies reactive to tick antigens in AGS patients19, and that anti-α-Gal IgE are strongly related to anti-tick IgE levels19,23 but further studies are needed to assess which biomolecules are actually involved.
In addition, another possible scenario is patients who present strong allergic reactions to tick bites and high levels of anti-α-Gal IgE antibodies but are tolerant to mammalian meat consumption12. Therefore, mammalian meat allergy could be a particular type of tick bite-related allergy. The principal tick species associated with AGS include Amblyomma americanum (USA), Amblyomma sculptum (Brazil), Amblyomma testudinarium and Haemaphysalis longicornis (Japan), Ixodes holocyclus (Australia), and Ixodes ricinus (the main vector of Lyme borreliosis in Europe)11,24.
The only model that has been used to evaluate IgE production related with tick bites is the mouse model genetically modified with the gene for α−1,3-galactosyltransferase knocked out (α-Gal KO) mice25,26 because like other mammals, mice also express α-Gal on proteins and lipids and do not produce IgE to α-Gal. However, zebrafish (Danio rerio) is a useful model for biomedical research applied to mammals because it shares many anatomical similarities with mammals and, like humans, is also unable to synthesize α-Gal. Since α-Gal is not produced naturally in zebrafish, it is an affordable model, easy to manipulate, and allows a high sample size for the study of α-Gal-related allergic reactions.
In this study, zebrafish is used as a model organism to characterize and describe local allergic reactions, behavioral patterns, and the molecular mechanisms associated with response to percutaneous sensitization to tick saliva26,27 and subsequent mammalian meat consumption. For this purpose, fish are exposed to tick saliva by intradermal injection and then are fed with dog feed, that contains mammalian meat-derived products suitable for animal use which contains α-Gal27, then possible related allergic reactions are evaluated. This method may be applied to the study of other biomolecules related to allergic processes, especially those related to AGS.
All methods described here have been approved by the Ethics Committee on Animal Experimentation of the University of Castilla La Mancha under the study "Evaluation of the immune response to inactivated M. bovis vaccine and challenge with M. marinum in the zebrafish model number PR-2017-05-12."
Ticks were obtained from the laboratory colony, where representative samples of ticks in the colony were tested by PCR for common tick pathogensto confirm the absence of pathogens, and maintained at the Institute of Parasitology, Biology Centre of the Czech Academy of Sciences (IP BC CAS), Czech Republic.All animal experiments were performed in accordance with the Animal Protection Law of the Czech Republic No. 246/1992 Sb (ethics approval No. 34/2018).
1. Zebrafish treatment
NOTE: The trial is designed to evaluate allergic reactions and the immune response in zebrafish treated with tick saliva in response to mammalian meat consumption.
2. Ixodes ricinus tick saliva extraction
3. Maintenance of zebrafish
4. Zebrafish injection
5. Zebrafish feeding
6. Evaluation of allergic reactions, lesions, and behavior in zebrafish
7. Sample collection
The protocol presented here is based on several aspects of previously published experiments27,30 and results performed in our laboratory where the zebrafish model is established and validated for the study of AGS and the immune response to α-Gal because both humans and zebrafish do not synthesize this molecule13. This model allows the characterization and evaluation of a variety of allergic reactions as a result of the host response t...
Zebrafish is a cost-effective and easy-to-handle model that also has been a very feasible tool for the study of molecular mechanisms of the immune response, pathogen diseases, novel drug testing, and vaccination and protection against infections33,34,35. The study on the behavior of zebrafish is useful since previous studies have found that some fish species remain motionless at the bottom of the tank when they are stressed, whi...
The authors have nothing to disclose.
We would like to thank members of the SaBio group for their collaboration in the experimental design and technical assistance with the fish experimental facility and Juan Galcerán Sáez (IN-CSIC-UMH, Spain) for providing zebrafish. This work was supported by Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación MCIN/AEI/10.13039/501100011033, Spain and EU-FEDER (Grant BIOGAL PID2020-116761GB-I00). Marinela Contreras is funded by the Ministerio de Ciencia, Innovación y Universidades, Spain, grant IJC2020-042710-I.
Name | Company | Catalog Number | Comments |
1.5 mL tube | VWR | 525-0990 | |
All Prep DNA/RNA | Qiagen | 80284 | |
Aquatics facilities | |||
BCA Protein Assay Kit | Thermo Fisher Scientific | 23225 | |
Disection set | VWR | 631-1279 | |
Dog Food - Red Classic | Acana | ||
ELISA plates-96 well | Thermo Fisher Scientific | 10547781 | |
Gala1-3Gal-BSA 3 (α-Gal) | Dextra | NGP0203 | |
iScript Reverse Transcription Supermix | Supermix | 1708840 | |
Microliter syringes | Hamilton | 7638-01 | |
Plate reader | any | ||
Phosphate buffered saline | Sigma | P4417-50TAB | |
pilocarpine hydrochloride | Sigma | P6503 | |
Pipette tip P10 | VWR | 613-0364 | |
Pipette tip P1000 | VWR | 613-0359 | |
Premium food tropical fish | DAPC | ||
Sponge Animal Holder | Made from scrap foam | ||
Stereomicroscope | any | ||
Thermal Cycler Real-Time PCR | any | ||
Tricaine methanesulphonate (MS-222) | Sigma | E10521 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved