A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes a methodology to assess the function of mechanically activated ion channels in native urothelial cells using the fluorescent Ca2+ sensor GCaMP5G.
Mechanically activated ion channels are biological transducers that convert mechanical stimuli such as stretch or shear forces into electrical and biochemical signals. In mammals, mechanically activated channels are essential for the detection of external and internal stimuli in processes as diverse as touch sensation, hearing, red blood cell volume regulation, basal blood pressure regulation, and the sensation of urinary bladder fullness. While the function of mechanically activated ion channels has been extensively studied in the in vitro setting using the patch-clamp technique, assessing their function in their native environment remains a difficult task, often because of limited access to the sites of expression of these channels (e.g., afferent terminals, Merkel cells, baroreceptors, and kidney tubules) or difficulties applying the patch-clamp technique (e.g., the apical surfaces of urothelial umbrella cells). This protocol describes a procedure to assess mechanically evoked Ca2+ transients using the fluorescent sensor GCaMP5G in an ex vivo urothelial preparation, a technique that could be readily adapted for the study of mechanically evoked Ca2+ events in other native tissue preparations.
Epithelial cells in the urinary tract are subjected to mechanical forces as the urinary filtrate travels through the nephrons, and urine is pumped out of the renal pelvis and travels through the ureters to be stored in the urinary bladder. It has been long recognized that mechanical forces (e.g., shear stress and stretch) exerted by fluids on the epithelial cells that line the urinary tract regulate the reabsorption of protein in the proximal tubule and of solutes in the distal nephron1,2,3,4,5,<....
Care and handling of the animals were carried out in accordance with the University of Pittsburgh Institutional Animal Care and Use Committee. Female, 2-4-month-old C57Bl/6J mice were used for the present study. The mice were obtained commercially (see Table of Materials).
1. Equipment assembly and setup
The present protocol describes a technique to assess mechanically evoked Ca2+ transients in umbrella cells using the fluorescent Ca2+ sensor GCaMP5G. Adenoviral transduction was employed to express GCaMP5G in urothelial cells due to its high efficiency and because it produces an elevated level of expression. Fluorescent images of stained cryosections from a transduced bladder are shown in Figure 2D. For these experiments, GCaMP5G expression is highest in the umbrella ce.......
All organisms, and seemingly most cell types, express ion channels that respond to mechanical stimuli20,33,34,35,36,37. The function of these mechanically activated channels has been predominantly assessed with the patch-clamp technique. However, due to accessibility issues, patch-clamp studies of mechanically activated ion c.......
This work was supported by NIH grants R01DK119183 (to G.A. and M.D.C.) and S10OD028596 (to G.A.) and by the Cell Physiology and Model Organisms Kidney Imaging Cores of the Pittsburgh Center for Kidney Research (P30DK079307).
....Name | Company | Catalog Number | Comments |
20x Objective | Olympus | UMPlanFL N | |
24 G ¾” catheter | Medline | Suresite IV slide | |
4x Objective | Olympus | UPlanFL N | |
Analog/digital converter | Molecular Devices | Digidata 1440A | |
Anti-GFP antibody | Abcam | Ab6556 | |
Beam splitter | Chroma | T495lpxr | |
Bipolar temperature controller | Warner Instruments | TC-344B | |
CaCl2 | Fluka | 21114-1L | 1 M solution |
cellSens software | Olympus | Imaging software | |
CMOS camera | Hamamatsu | ORCA fusion | |
Donkey anti-rabbit conjugated to Alexa Fluor 488 | Jackson ImmunoResearch | 711-545-152 | |
Excel | Microsoft Corporation | ||
Filter | Chroma | ET470/40X | |
Glass capillaries Corning 8250 glass | Warner Instruments | G85150T-4 | |
Glucose | Sigma | G8270 | |
HEPES | Sigma | H4034 | |
Inline heater | Warner Instruments | SH-27B | |
KCl | Sigma | 793590 | |
Light source | Sutter Instruments | Lambda XL | |
Manifold pump tubing | Fisherbrand | 14-190-510 | ID 1.52 mm |
Manifold pump tubing | Fisherbrand | 14-190-533 | ID 2.79 mm |
MgCl2 | Sigma | M9272 | |
Mice | Jackson Lab | 664 | 2-4 months old female C57BL/6J |
Microforge | Narishige | MF-830 | |
Micromanipulator | Sutter Instruments | MP-285 | |
Microscope | Olympus | BX51W | |
Mounting media with DAPI | Invitrogen | S36964 | Slowfade Diamond Antifade with DAPI |
NaCl | Sigma | S7653 | |
pClamp software | Molecular Devices | Version 10.4 | Patch-clamp electrophysiology data acquisition and analysis software |
Peristaltic pump | Gilson | Minipuls 3 | |
Piezoelectric actuator | Thorlabs | PAS005 | |
Pipette holder | World Precision Instruments | ||
Pipette puller | Narishige | PP-830 | |
Quick exchange heated base with perfusion and adapter ring kit | Warner Instruments | QE-1 | Quick exchange platform fits 35 mm dish |
Rhodamine-phalloidin | Invitrogen | R415 | |
Sigma-Plot | Systat Software Inc | Version 14.0 | Scientific graphing and data analysis software |
Silicone elastomer | Dow | Sylgard 184 | |
Single channel open-loop piezo controller | Thorlabs | MDT694B | |
Square grid holder pad | Ted Pella | 10520 | |
Suture | AD Surgical | S-S618R13 | 6-0 Sylk |
Teflon mounting rod | Custom made | Use to mount the piezoelectric actuator in the micromanipulator | |
Tubing | Fisher Scientific | 14171129 | Tygon S3 ID 1/16 IN, OD 1/8 IN |
USB Digital I/O device | National Instruments | NI USB-6501 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved