A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Engineering
従来のウェットハンドレイアッププロセス(WL)は、繊維複合ラミネートの製造に広く適用されてきました。しかし、成形圧力の不足により、繊維の質量分率が低下し、内部に気泡が多く閉じ込められ、低品質(剛性・強度が低い)の積層体になってしまいます。複合積層板を製造するためのウェットハンドレイアップ/真空バッグ(WLVB)プロセスは、従来のウェットハンドレイアッププロセスに基づいており、真空バッグを使用して気泡を除去して圧力をかけ、加熱および硬化プロセスを実行します。
従来のハンドレイアッププロセスと比較して、WLVBプロセスで製造されたラミネートは、強度と剛性の向上、繊維体積分率の向上、ボイド体積分率の低下など、優れた機械的特性を示し、これらはすべて複合積層板の利点です。この工程は完全に手作業で行われており、準備担当者のスキルに大きく影響されます。そのため、ボイドや厚みムラなどの欠陥が発生しやすく、ラミネートの品質や機械的特性が不安定になります。したがって、積層板の機械的特性を確保するためには、WLVBプロセスを細かく記述し、ステップを細かく制御し、材料比率を定量化する必要があります。
この論文では、ガラス繊維強化複合積層板(GFRP)を調製するためのWLVBプロセスの詳細なプロセスについて説明します。積層板の繊維体積率は式法を用いて計算され、計算結果はWL積層板の繊維体積率が42.04%であったのに対し、WLVB積層板の繊維体積率は57.82%で、15.78%増加した。ラミネートの機械的特性は、引張試験と衝撃試験を使用して特徴付けられました。実験の結果、WLVB法では積層板の強度が17.4%、弾性率が16.35%向上し、比吸収エネルギーが19.48%増加した。
Explore More Videos
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved