A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This is a report on an experimental model of ligature-induced peri-implantitis in mice. We describe all surgical steps, from pre- and post-operative management of the animals, extractions, implant placement, and ligature-induced peri-implantitis.
Dental implants have a high success and survival rate. However, complications such as peri-implantitis (PI) are highly challenging to treat. PI is characterized by inflammation in the tissues around dental implants with progressive loss of supporting bone. To optimize dental implants' longevity in terms of health and functionality, it is crucial to understand the peri-implantitis pathophysiology. In this regard, using mouse models in research has proven clear benefits in recreating clinical circumstances. This study aimed to describe an experimental model of ligature-induced peri-implantitis in mice and determine whether there is effectiveness in inducing this disease, given the observed bone and tissue changes. The experimental peri-implantitis induction comprehends the following steps: teeth extraction, implant placement, and ligature-inducted PI. A sample of eighteen 3-week-old C57BL/6J male mice was divided into two groups, ligature (N=9) and control non-ligature (N=9). The evaluation of clinical, radiographical, and histological factors was performed. The ligature group showed significantly higher bone loss, increased soft tissue edema, and apical epithelial migration than the non-ligature group. It was concluded that this pre-clinical model can successfully induce peri-implantitis in mice.
Dental implants are increasingly prevalent as a desirable choice for replacing missing teeth1. The prevalence of dental implants in the US adult population is projected to increase up to 23% by 20262. Based on a market analysis report by Grand View Research (2022), the global market size of dental implants was projected to reach approximately US $4.6 billion in 2022. Furthermore, it is anticipated to exhibit a steady annual growth rate of around 10% until the year 20303. Unfortunately, the use of dental implants can lead to complications, such as peri-implantitis. Peri-implantitis has been defined as a biofilm-induced condition characterized by inflammation in the peri-implant mucosa and subsequent progressive loss of supporting bone4.
A systematic review found that the mean prevalence of peri-implantitis was 19.53% (95% Confidence interval [CI], 12.87 to 26.19%) at the patient level and 12.53% (95% CI 11.67 to 13.39%) at the implant-level5. Peri-implantitis represents a growing public health, due to an increase in implant failure and, consequently, substantial treatment costs6.
Understanding the pathogenesis of peri-implantitis is crucial to developing a systematic approach to prevent its onset and progression and maximize dental implants' longevity in terms of aesthetics and function7,8. In this sense, using murine models in dental research has proven advantageous, given that mice share more than 95% of their genes with humans9,10, the number of available online genetic databases, and the ability to reproduce clinical scenarios11. All the described advantages allow the dissection of genetic mechanisms in different diseases12, accessible accommodation and management, and antibodies widely available as human panels, beyond the genetic modification availability (e.g., knockout and overexpression) for inflammatory tissue assessment and disease mapping13. Although advantageous, there are few publications addressing peri-implantitis in mice. This is due to methodological challenges, among others, including the difficulty in obtaining mini-implants or installing them.
To develop peri-implantitis in mice, many protocols have been described, such as ligature-induced peri-implantitis, bacteria-induced peri-implantitis14, Lipopolysaccharide (LPS)-induced peri-implantitis15, or the combination LPS + ligature-induced peri-implantitis16. Here, we will focus on the ligature model because it is the most widely accepted method to induce periodontitis17,18,19 and, more recently, peri-implantitis20,21. The ligature placed around the implants in a submucosal position stimulates plaque accumulation and, consequently, tissue inflamation. So, the development of this approach is based on the indication of a viable cost-benefit technique for pre-clinical investigations on peri-implant diseases. This study aims to describe an experimental model of ligature-induced peri-implantitis in mice and determine whether there is effectiveness in inducing this disease given the observed bone and tissue changes.
The overall goal of this article is to report the protocol applied to induce peri-implantitis in mice by ligature and to observe its effectiveness through tissue evaluation and bone loss around the implants.
Access restricted. Please log in or start a trial to view this content.
Procedures involving animal subjects have been approved by the Chancellor's Animal Research Committee of the University of California, Los Angeles (ARC protocol number 2002-125), and the Animal Research: Reporting In Vivo Experiments (ARRIVE)22. For this method, eighteen 3-week-old C57BL/6J male mice were used and underwent dental extractions, implant placement and peri-implantitis induction. All dental procedures were performed under 10× microscopic magnification and carried out by trained and calibrated operators (Figure 1A).
1. Pre-extraction steps
Figure 1: Operative adaptations: (A) Microscopic magnification. (B) Adapted inhalation anesthesia system and stabilization for mouth opening. Please click here to view a larger version of this figure.
2. Dental extraction
Figure 2: Initial extraction sequence: (A, B) Maxillary region with 1st and 2nd molar teeth and use of dental explorer for elevation and luxation. (C) Use of the tip forceps and explorer for luxation and tooth removal. (D) Hemostasis. (E, F) Alveolar appearance after extractions. Please click here to view a larger version of this figure.
3. Implant placement
Figure 3: Implant placement sequence: (A) Incision using a 15c blade attached to the handle. (B) Full-thickness flaps using #5 dental explorer. (C) Osteotomy using a 0.3 mm carbide micro hand drill attached to a Pin Vise. (D) Titanium dental implant. (E, F) Implant support and implant holder. (G- I) Implant placement using a clockwise screwing motion. Please click here to view a larger version of this figure.
4. Peri-implantitis induction
Figure 4: Ligature-induced peri-implantitis sequence. (A-D) Silk ligature (6.0) placed around the implant head. (E-G) Knot closure. (H) Ligature cut. (I) Final appearance. Clinical images obtained from live animals under sedation. Please click here to view a larger version of this figure.
5. Sacrifice
6. Micro-computed tomography (µCT )
7. Statistical analysis
Access restricted. Please log in or start a trial to view this content.
For this method, eighteen 3-week-old C57BL/6J male mice were used and underwent dental extractions, implant placement and peri-implantitis induction. There were nine animals per group which was statistically significant, considering linear bone loss achieving 80% power, 15% standard deviation (σ) and 95% confidence interval (α =0.05). Mice were fed a soft diet ad libitum during the experiment. Nine mice received a ligature (ligature-induced periimplantitis-experimental group), and nine mice did not rec...
Access restricted. Please log in or start a trial to view this content.
This protocol presents a descriptive report on surgical procedures for peri-implantitis induction utilizing a ligature model in mice. Working with mice has advantages, such as being cost-effective, the availability of an extensive genetic array given the many backgrounds23 among other aspects24,25. Over the years, several studies have successfully utilized mice in the medical and dental fields, including in peri-implantitis
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was supported by the NIH/NIDCR DE031431. We would like to thank the Translational Pathology Core Laboratory at UCLA for assistance with preparing the decalcified histological sections.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
#5 dental explorer | Hu-Friedy, Chicago, IL | 392-0911 | Dental luxation |
15c blade and surgical scalpel | Henry Schein Inc., Melville, NY | 1126186 | Tissue incision |
6-0 silk ligatures | Fisher Scientific, Hampton, NH | NC9201232 | Ligature |
Amoxicillin 50μg/mL | Zoetis, San Diego, CA | TS/DRUGS/57/2003 | Oral suspension |
Bacon Soft Diet | Bio Serve®, Frenchtown, NJ | 14-726-701 | - |
C57BL/6J male mice | The Jackson Laboratories, Bar Harbor, ME, USA | 000664 | Age: 3-week-old |
CTAn software | V.1.16 Bruker, Billerica, MA | - | Volumetric analysis |
Dolphin software | Navantis, Toronto, CA | - | Linear bone analysis |
Implant carrier & Tip | D. P. Machining Inc., La Verne, CA | Unique product | Implant holder |
Implant support | D. P. Machining Inc., La Verne, CA | Unique product | Implant capture |
Isoflurane | Vet One, Boise, ID | NDC13985-528-60 | Inhalational anesthetic |
Micro-CT scan 1172 | SkyScan, Kontich, Belgium | - | μCT scans |
Nrecon Software | Bruker Corporation, Billerica, MA | - | Images reconstruction |
Ø 0.3mm - L 2.5mm Micro Drills | Sphinx, Hoffman Estates, IL | ART. 50699 | Osteotomy |
Ø 0.5mm - L 1.0mm Titanium implants | D. P. Machining Inc., La Verne, CA | Unique product | - |
Ophthalmic lubricant | Apexa, Ontario, CA | NDC13985-600-03 | Artificial tears |
Pin Vise | General Tools, Secaucus, NJ | 90 | Osteotomy |
Rimadyl 50mg/ml | Zoetis, San Diego, CA | 4019449 | Anti-inflammatory |
Sterile cotton tipped | Dynarex, Glendale, AZ | 4304-1 | Hemostasis |
Tip forceps | Fine Science Tools, Foster City, CA | 11071-10 | Dental Extraction |
Tying forceps | Fine Science Tools, Foster City, CA | 18025-10 | Ligature placement |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved