The goal of this protocol is to demonstrate how to monitor fluorescently-tagged protein dynamics on plant cell surfaces with variable-angle epifluorescence microscopy, showing blinking dots of GFP-tagged PATROL1, a membrane trafficking protein, in the cell cortex of the stomatal complex in Arabidopsis thaliana.
The protocol describes how to engineer a perfusable vascular network in a spheroid. The spheroid's surrounding microenvironment is devised to induce angiogenesis and connect the spheroid to the microchannels in a microfluidic device. The method allows the perfusion of the spheroid, which is a long-awaited technique in three-dimensional cultures.
We present an in vivo two-photon imaging protocol for imaging the cerebral cortex of neonatal mice. This method is suitable for analyzing the developmental dynamics of cortical neurons, the molecular mechanisms that control the neuronal dynamics, and the changes in neuronal dynamics in disease models.
The goal of this protocol is to demonstrate how to induce clustered stomata in cotyledons of Arabidopsis thaliana seedlings by immersion treatment with a sugar-containing medium solution and how to observe intracellular structures such as chloroplasts and microtubules in the clustered guard cells using confocal laser microscopy.
The present protocol describes the isolation and culture of oral keratinocytes derived from the adult mouse palate. An evaluation method using immunostaining is also reported.
Here, we describe a visualization and quantification method for murine hind-limb vessels using micro-X-ray computed tomography.
Ex situ magnetic surveys can directly provide bulk and local information on a magnetic electrode to reveal its charge storage mechanism step by step. Herein, electron spin resonance (ESR) and magnetic susceptibility are demonstrated to monitor the evaluation of paramagnetic species and their concentration in a redox-active metal-organic framework (MOF).
A hyperglycemic clamp is used for measuring insulin release with a maintained higher blood glucose concentration. A hypoglycemic clamp is for measuring glucose production induced by counter-regulatory responses. Both methods use the same surgical procedure. Here, we present a clamp technique to assess systemic glucose metabolism.
Primary sensory areas in the neocortex exhibit unique spontaneous activities during development. This article describes how to visualize individual neuron activities and primary sensory areas to analyze area-specific synchronous activities in neonatal mice in vivo.
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır