JoVE Logo

Oturum Aç

Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.

Bu Makalede

  • Özet
  • Özet
  • Protokol
  • Tartışmalar
  • Açıklamalar
  • Teşekkürler
  • Malzemeler
  • Referanslar
  • Yeniden Basımlar ve İzinler

Özet

Biz kurmak nasıl göstermek In vitro Iskemi / reperfüzyon modeli ve nasıl postiskemik kalp hücreleri kök hücre tedavisinin etkisini değerlendirmek.

Özet

Kök hücre naklinin klinik pratikte 1,2,3 kendi yolunu buluyor. , Daha iyi sonuçlar elde protokolleri daha güçlü hale getirmek ve implante edilebilir piller için yeni kaynaklar bulma 4,5 son araştırma odağı . Hücre tedavileri etkinliğinin incelenmesi kolay bir iş değildir ve yeni araçlar, tedavi sürecinin 6 katılan mekanizmalarının araştırılması için ihtiyaç vardır . Iskemi / reperfüzyon deneysel bir protokol, ve kök hücre nakli sonrası iskemi / reperfüzyon sırasında hücresel bağlantıları ve hatta hücre içi mekanizmaları gözlem izin ve hücre tedavisinin etkinliğini değerlendirmek amacıyla tasarlanmıştır. H9c2 cardiomyoblast hücreleri, hücre kültürü plakaları 7,8 üzerine yerleştirilir . İskemi glikoz serbest bir ortamda% 0.5 altında oksijen seviyesi ile 150 dakika ile simüle edildi. Sonra, normal medya ve oksijen seviyesi reperfüzyon simüle etmek için tekrar edilmiştir. Oksijen glikoz yoksunluk sonra,hasarlı hücreleri kültürüne ekleyerek elde edilen mezenkimal kök hücreler işaretli insan kemik iliği nakli ile tedavi edildi. Mezenkimal kök hücreleri, minimal invaziv cerrahi ile kolayca erişilebilir, kolayca genişletilebilir ve otolog, çünkü klinik çalışmalarda tercih edilir. Eş-yetiştiriciliği 24 saat sonra, hücreler canlı ve ölü hücrelerden ayırt etmek Calcein ve ethidium-homodimer ile boyandı. Bu kurulum bize konfokal floresan mikroskobu kullanarak hücrelerarası bağlantıları araştırmak ve postiskemik hücreler flow sitometri ile hayatta kalma oranını ölçmek için izin verdi. Mikroskopisi gibi hücre füzyon ve hücrelerarası nanotüpler oluşumu gibi iki hücre popülasyonlarının etkileşimleri gösterdi. Flow sitometri analizi hasarlı hücrelerinin bir grafik üzerinde çizilen ve istatistiksel analiz edilebilir 3 kümeleri ortaya çıkardı. Bu kesimler ayrı ayrı araştırılmalıdır ve sonuçlar simüle etkinliğini bu veriler üzerinde çizilebilirterapötik yaklaşım.

Protokol

1. Preparing H9c2 cardiomyoblast cells

H9c2 rat cardiomyoblasts were obtained from ATCC (Wesel, Germany) and expanded in high glucose (4.5 g/L) DMEM containing 10% fetal bovine serum, 4 mM L-glutamine, 100 U/ml penicillin and 100 μg/ml streptomycin. The H9c2 myoblast cell line is derived from embryonic rat heart, it is used as an in vitro model for both skeletal and cardiac muscle 8,9.

Prepare 12 well plate of H9c2 cells:

  1. Remove culture medium from Petri dish of H9c2 cells.
  2. Wash cells twice with 5 ml PBS and digest with 2-3 ml 0.05% trypsin/EDTA.
  3. Place Petri dish for 5 minutes in the 37°C incubator.
  4. Inhibit trypsin with 10 ml DMEM culture medium.
  5. Spin down the cells at 1200 RPM for 8 minutes.
  6. After removing the supernatant, resuspend cells in 1 ml DMEM culture medium and count cells with hemocytometer using Trypan Blue staining.
  7. Seed 30,000 H9c2 cells in 2 ml DMEM per well in a 12 well plate.
  8. Place the plate into the 37°C CO2 incubator for 24 hours.

2. Simulated ischemia/reperfusion

Ischemia/reperfusion was simulated in vitro by performing oxygen glucose deprivation (OGD) on H9c2 cell cultures. This procedure was performed on the stage of the Zeiss confocal microscope with the PeCon cell incubation system (Erbach, Germany) allowing the observation of the cells during OGD.

  1. Remove medium by aspiration from 12 well plate of H9c2 cells.
  2. Wash cells twice with PBS.
  3. Add 3 ml glucose free medium per well.
  4. Place the plate into the cell incubation system.
  5. Start nitrogen gas to purge the oxygen out of the incubation system.
  6. Wait until the level of oxygen reaches 0.5% then start the timer. 0.5% oxygen means approximately 3 mmHg partial tension. Subject cells to 150 minutes of simulated ischemia.
  7. At the end of simulated ischemia, remove the glucose free medium from the cells.
  8. Pipette 2 ml normal culture medium to the wells.
  9. Place the 12 well plate for 30 minutes in the 37°C CO2 incubator; this is the "reperfusion period".

3. Preparing rescue mesenchymal stem cells

Bone marrow of human origin was taken into T75 flasks and diluted with Dulbecco's Modified Eagle's Medium (DMEM) culture medium containing 10% fetal calf serum (FCS), 100 U/ml penicillin and 100 μg/ml streptomycin, 4 mM L-glutamine and 1 g/l glucose. The flasks were incubated at 37°C in a fully humidified atmosphere of 5% CO2 for 3 days. After the incubation period the BMSCs adhered to the surface of the flasks and the remaining components of bone marrow were eliminated by washing with PBS. The used BMSCs were between 1 and 5 passages in the experiments. The identity of cells was confirmed by the presence of lineage-specific cell surface markers with flow cytometry. Hematopoietic linage-specific surface markers (CD34, CD45) and mesenchymal surface markers (CD73, CD90, CD105 and CD166) were investigated.

During simulated ischemia, prepare rescue mesenchymal stem cells for transplantation.

  1. Dilute the fluorescent dye Vybrant DiD in 1:200 ratio in DMEM culture medium.
  2. Aspirate medium from the rescue cells and add 300 μl DMEM with Vybrant DiD.
  3. Place Petri dish for 30 minutes in the 37°C CO2 incubator.
  4. Remove culture medium from Petri dish of mesenchymal stem cells.
  5. Wash cells twice with 5 ml PBS and digest with 2-3 ml 0.05% trypsin/EDTA.
  6. Place Petri dish for 5 minutes in the 37°C incubator.
  7. Inhibit trypsin with 10 ml DMEM culture medium.
  8. Spin down the cells at 1200 RPM for 8 minutes.
  9. After removing the supernatant, resuspend cells in 1 ml DMEM culture medium and count cells with hemocytometer using Trypan Blue staining.
  10. After 30 minutes at the end of the reperfusion add 20,000 mesenchymal stem cells per well to the postischemic H9c2 cardiac myoblasts.
  11. Place co-culture of cells into the 37°C CO2 incubator for 24 hours.

4. Analysis with confocal microscopy

After the simulated ischemia/reperfusion injury, cells are incubated in normal culture medium for 24 hours.

  1. After 24 hours wash cells twice with PBS.
  2. Stain the cells in 500 μl live/dead dye solution for 30 minutes (5 nM calcein and 400 nM Ethidium-homodimer-2 in PBS) (5x104 cell/ml).

The evaluation of confocal images for live and dead cells selected by morphology and fluorescence can be performed with the ImageJ software (National Institutes of Health, USA). In case of co-cultures, MSCs can be distinguished from H9c2 cells due to their Vybrant DiD cell labeling. The ratio of dead cells can be evaluated in 4 independent fields of view (objective 10x) for each culture in a blind fashion10.

H9c2 cardiomyoblasts cultured on 42 mm glass coverslips can also be investigated with time lapse video microscopy during and after ischemia/reperfusion injury using the cell incubation system of the confocal microscope. Cell-to-cell interactions such as cell fusion and formation of intercellular nanotubes can be studied over time.

5. Analysis with flow cytometry

After the simulated ischemia/reperfusion injury, cells are incubated in normal culture medium for 24 hours.

  1. After 24 hours, harvest the culture media. It is very important to collect the culture medium also because some dead cells could have detached from the culture dish surface during the 24 hour incubation.
  2. Wash cells twice with PBS and digest with 0.05% trypsin-EDTA.
  3. Inhibit trypsin with DMEM culture medium.
  4. Spin down the cells and the harvested culture medium at 1200 RPM (approximately 150-200g) for 8 minutes.
  5. Discard the supernatant.
  6. Suspend the cells in 500 μL live/dead dye solution for 30 minutes (5 nM calcein and 400 nM Ethidium-homodimer-2 in PBS) (5x104 cell/ml).
  7. Transfer cells to flow cytometry tubes.
  8. Start the CellQuest Pro software.
  9. To set up the flow cytometer for measurement, prepare control samples of live and dead cells.
    1. Plate H9c2 cells at a density of 3x104 in 12-well plates as described in point 1.
    2. Prepare live cell controls with single trypsinisation as described in point 1.
    3. Prepare dead cell controls by treatment with 10 μM H2O2 for 1 hour.
    4. After trypsinisation, resuspend live and dead cell controls in 500 μl live/dead dye solution (5 nM calcein-AM and 400 nM Ethidium-homodimer-2 in PBS).
  10. The instrument settings should be adjusted so the living cells are calcein positive and ethidium homodimer negative, while the dead cells are calcein negative and ethidium homodimer positive.
  11. The percentage of these populations can be expressed as bars on a graph and statistical analysis can be performed on these values.
  12. Measure the different experimental groups.

6. Representative results:

Our results showed that added mesenchymal stem cells could improve the survival of postischemic cardiac cells. Confocal microscopy images revealed direct cell-to-cell interactions, such as partial membrane connection or intercellular nanotubes, which probably play an important role in the observed protection10. These nanotubes span over distances of several cell diameters, and their diameters were between 200 and 500 nm (white arrows).

figure-protocol-8121
Figure 1. Nanotube formation between cells. Nanotube formation (white arrow) was observed between Vybrant DiO labeled cardiomyoblasts and Vybrant DiD labeled mesenchymal stem cells.

Flow cytometry analysis showed the populations of surviving and necrotic cardiomyoblasts and mesenchymal stem cells. Interestingly, we also observed a third, ‘injured’ cardiomyoblast cell population which contained calcein but also contained the indicator of the dead cells, ethidium homodimer (Figure 2).

figure-protocol-8768
Figure 2. Representative dot-plot of the different cell populations after simulated ischemia.

The evaluation of several experiments showed that addition of mesenchymal stem cell to postischemic H9c2 cardiomyoblast increased significantly the percentage of living cells compared to the cardiac myoblasts cultured alone after ischemia (Figure 3).

figure-protocol-9257
Figure 3. Effect of stem cell treatment on postischemic cardiomyoblasts. Percentage of living cells was significantly reduced after simulated ischemia compared to control (control vs. I-R model: 90.36±2.60 vs. 10.52±0.48, *** p>0.001), which increased after addition of mesenchymal stem cells (I-R model vs. I-R + BMSC: 10.52±0.48 vs. 25.21±2.13, *** p>0.001). Data represent mean±SEM. Statistical analysis of data was carried out using one-way analysis of variance with Tukey's multiple comparison post hoc test.

Access restricted. Please log in or start a trial to view this content.

Tartışmalar

Göstermiştir protokol in vitro bir yaklaşım, böyle bir modelin tüm avantaj ve dezavantajları ile miyokard infarktüsü kök hücre tedavisi, çok daha karmaşık bir sorun. Açıkçası miyokard infarktüsü sırasında ve sonrasında meydana gelen karmaşık olayları (örneğin immünolojik) yansıtmamaktadır ancak eklendi hücreleri postiskemik hücreleri üzerinde doğrudan etkileri odaklanabilirsiniz. H9c2 cardiomyoblasts simüle iskemi etkileri çok kullanılan hücre geçiş sayısı ve O 2 kon...

Access restricted. Please log in or start a trial to view this content.

Açıklamalar

Çıkar çatışması ilan etti.

Teşekkürler

Bu çalışma OTKA (Macarca Bilimsel Araştırma Fonu) D45933, T049621, TET (Macarca Bilim ve Teknoloji Vakfı) A4/04, Arg-17/2006 ve SIN, Bolyai, Öveges Burslar ve TÁMOP tarafından desteklenen 4.2.2-08 / 1 / KMR-2008-0004 ve 4.2.1 / B 09/1/KMR-2010-0001. OTKA 83.803. William Gesztes üzerinden ses sağlamak için teşekkür etmek istiyorum.

Access restricted. Please log in or start a trial to view this content.

Malzemeler

NameCompanyCatalog NumberComments
Reaktifi Adı Şirket Katalog numarası Yorumlar
Calcein-AM Moleküler Probları L3224, C3099 http://www.invitrogen.com
ethidium homodimer-2 Moleküler Probları L3224, E3599 http://www.invitrogen.com
Vybrant DID Moleküler Probları V22887 http://www.invitrogen.com

Tablo 1. Reaktifler.

Ekipman Adı Şirket Yorumlar (isteğe bağlı)
Pecon hücre kuluçka sistemi Zeiss mikroskoplar Pecon GmbH www.pecon.biz/

Tablo 2. Ekipman.

Referanslar

  1. Dimmeler, S., Burchfield, J., Zeiher, A. M. Cell-Based Therapy of Myocardial Infarction. Arterioscler Thromb Vasc Biol. 28, (2008).
  2. Kim, S. U., de Vellis, J. Stem cell-based cell therapy in neurological diseases: A review. Journal of Neuroscience Research. 87, 2183-21 (2009).
  3. Lee, K., Chan, C. K., Patil, N., Goodman, S. B. Cell therapy for bone regeneration-Bench to bedside. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 89, 252-25 (2009).
  4. Gaipa, G. GMP-based CD133+ cells isolation maintains progenitor angiogenic properties and enhances standardization in cardiovascular cell therapy. Journal of Cellular and Molecular Medicine. 14, 1619-1619 (2010).
  5. Trounson, A. New perspectives in human stem cell therapeutic research. BMC medicine. 7, 29-29 (2009).
  6. Mazhari, R., Hare, J. M. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med. 4, Suppl 1. S21-S21 (2007).
  7. Kimes, B. W., Brandt, B. L. Properties of a clonal muscle cell line from rat heart. Experimental Cell Research. 98, 367-367 (1976).
  8. Sardao, V. A. Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide--characterization of morphological features of cell death. BMC Cell Biol. 8, 11-11 (2007).
  9. Hescheler, J. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circulation research. 69, 1476-1476 (1991).
  10. Cselenyak, A. Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol. 11, 29-29 (2010).
  11. Sauvant, C. Implementation of an in vitro model system for investigation of reperfusion damage after renal ischemia. Cell Physiol Biochem. 24, 567-567 (2009).
  12. Namas, R. A. Hypoxia-Induced Overexpression of BNIP3 is Not Dependent on Hypoxia-Inducible Factor 1alpha in Mouse Hepatocytes. Shock. 36, 196-196 (2011).
  13. Cao, L. Hypoxia/Reoxygenation Up-Regulated the Expression of Death Receptor 5 and Enhanced Apoptosis in Human Hepatocyte Line. Transplantation Proceedings. 38, 2207-2207 (2006).
  14. Meloni, B. P., Meade, A. J., Kitikomolsuk, D., Knuckey, N. W. Characterisation of neuronal cell death in acute and delayed in vitro ischemia (oxygen-glucose deprivation) models. Journal of Neuroscience Methods. 195, 67-67 (2011).
  15. Mimeault, M., Hauke, R., Batra, S. K. Stem cells: a revolution in therapeutics--recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clinical Pharmacology & Therapeutics. 82, 252-252 (2007).
  16. Angoulvant, D. Mesenchymal stem cell conditioned media attenuates in vitro and ex vivo myocardial reperfusion injury. J Heart Lung Transplant. 30, 95-95 (2010).
  17. Lim, Y. J., Zheng, S., Zuo, Z. Morphine Preconditions Purkinje Cells against Cell Death under In Vitro Simulated Ischemia/Reperfusion Conditions. Anesthesiology. 100, 562-562 (2004).
  18. Guo, J. Estrogen-receptor-mediated protection of cerebral endothelial cell viability and mitochondrial function after ischemic insult in vitro. J Cereb Blood Flow Metab. 30, 545-545 (2010).

Access restricted. Please log in or start a trial to view this content.

Yeniden Basımlar ve İzinler

Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi

Izin talebi

Daha Fazla Makale Keşfet

T pSay 57iskemi reperf zyon modelik k h cre naklikonfokal mikroskobiflow sitometri

This article has been published

Video Coming Soon

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır