Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.
Method Article
For the first time we present here a reproducible banding procedure to alter hemodynamics in the developing heart ex ovo. This is achieved by partially constricting the outflow tract (OFT).
The new model presented here can be used to understand the influence of hemodynamics on specific cardiac developmental processes, at the cellular and molecular level. To alter intracardiac hemodynamics, fertilized chicken eggs are incubated in a humidified chamber to obtain embryos of the desired stage (HH17). Once this developmental stage is achieved, the embryo is maintained ex ovo and hemodynamics in the embryonic heart are altered by partially constricting the outflow tract (OFT) with a surgical suture at the junction of the OFT and ventricle (OVJ). Control embryos are also cultured ex ovo but are not subjected to the surgical intervention. Banded and control embryos are then incubated in a humidified incubator for the desired period of time, after which 2D ultrasound is employed to analyze the change in blood flow velocity at the OVJ as a result of OFT banding. Once embryos are maintained ex ovo, it is important to ensure adequate hydration in the incubation chamber so as to prevent drying and eventually embryo death. Using this new banded model, it is now possible to perform analyses of changes in the expression of key players involved in valve development and to understand the role of hemodynamics on cellular responses in vivo, which could not be achieved previously.
Abnormally formed outflow valves are the most common type of congenital heart defects 1. However, defective cardiac valve structure and function, even though present at birth, may become symptomatic only in adulthood. In fact, several adult valve diseases can be attributed to a congenital origin. Treatment of such patients often involves replacing defective valves, and, importantly, replaced aortic valves have been shown to have congenital anomalies 2. Given the fact that critical processes involved in valve development begin early during embryogenesis, the importance of better understanding the mechanisms that regulate these events is highlighted.
The primitive heart tube, which is the first functioning organ in an embryo, exhibits two distinct layers - an endothelial endocardium surrounded by myocardium - separated by extracellular matrix (cardiac jelly) which is mostly produced and secreted by the myocardium 3-5. As development continues, valve primordia (endocardial cushions) are formed, after rightward looping of the embryonic heart, by local expansion of the cardiac jelly at the atrioventricular (AV) canal and the outflow tract (OFT) 4,6. This expansion is mediated by the highly regulated process of epithelial-mesenchymal transition (EMT), during which the cardiac jelly becomes populated by endocardially-derived mesenchymal cells 6. In addition to the mesenchymal population derived through EMT, neural crest cells are also involved in valvulogenesis of the OFT 3.
Hemodynamic stimuli, such as shear stress, are important epigenetic factors that regulate heart development in the embryo 7,8. Using a 3D in vitro system, we have previously shown shear stress to be a factor influencing the expression and deposition of fibrous extracellular matrix (ECM) proteins in AV and OFT cushions 9,10. Moreover, studies carried out by several researchers have demonstrated that altered blood flow leads to improper valves and septa formation 11-16. Recently, using the novel banding procedure presented here, we have shown that changing hemodynamics in the embryonic chick heart affects the early processes involved in OFT valve formation 17.
The technique described here provides a novel model for altering hemodynamics in the developing chick heart by partially constricting the OFT ex ovo. This reproducible procedure is relatively quick and allows researchers to obtain a sufficient number of embryos/whole hearts/OFT tissue, etc. for downstream analyses including gene expression studies. Moreover, this new model can be used to study 'chronic' effects of altered hemodynamics on OFT valve development.
Kuş embriyolar IUCAC yönetmelikleri uyarınca omurgalı hayvanlar olarak kabul edilmez.
1. Cerrahi Embriyolar Alınması
2. OFT Bantlama
3. Yapıştırma Müdahale Hemodinamiğin bir değişikliğe neden olduğunu onaylama
Not: bantlama müdahalesiyle kısmen daralma OVJ kan akış hızında bir artışa neden olur. Bu parametrelerden uygun deney istenen bir zaman noktasında gerçekleştirilir 2D ultrason görüntüleme kullanılarak değerlendirilir.
Not: embriyonun kalp hızı görüntüleme sırasında azalırsa, bu şekilde elde edilen hız veri analizi için kullanılmamalıdır. Hız ölçümleri için kullanılan tüm embriyolar, tercihen ultrason görüntüleme ile başka deneyler için kullanılmamalıdır.
Şekil 1'de gösterildiği OFT bantlama için gerekli araçları tavsiye edilir. Kapakla kapatıldı embriyo yok etmeyecek şekilde embriyo eski ihtiva eden petri (Şekil 1A) ovo yeterince derin olması gerekmektedir. Derin Petri kutuları (Şekil 1C), aynı zamanda Tyrode tamponu yeterli miktarda sarısı üstüne döküldü izin vermek için, ultrason görüntüleme için kullanılmalıdır.
Bu teknik nispeten hızlı ve kolay uygulanabilir olması, ancak bazı önemli noktaları doğru aşağı sonuçlar elde edecek şekilde akılda tutulması gerekir. Embriyolar, yeterli rehidrasyon sağlamak Tyrode tamponu ihtiva eden bir petri tabağına ovo ex muhafaza edilmelidir. Tyrode tamponu ile yumurta sarısı sonrası ameliyat hidrat ve inkübasyon odası yeterince hidrate emin olmak için de önemlidir. Herhangi bir kanama görülebilir veya sarısı hatta biraz kırık ise ameliyatları bir embriyo ?...
The authors have nothing to disclose.
The authors would like to acknowledge Dr. Robert Price and the staff of the Instrumentation Resource Facility at the University of South Carolina School of Medicine. This work was partially supported by a SPARC Graduate Research Grant from the Office of the Vice President for Research at the University of South Carolina (JDP/VM). In addition this work was supported by Cook Biotech research agreement (JDP) and by FirstString Research Inc (JDP) and NIH 2 P20-RR016434-06 (JDP). In addition, NIH IDeA Networks of Biomedical Research Excellence (INBRE) grant for South Carolina P20GM103499 (JE)
Name | Company | Catalog Number | Comments |
Fertilized Bovan chicken eggs | Clemson University, Clemson, SC | ||
11 / 0 Nylon suture | Ashaway | S30001 | UV sterilize knots before surgery |
100 x 26 mm petri dish | VWR | 25387-030 | |
Transfer pipettes | Thermo Scientific | 232-20S | |
Scalpel handle #3 | Fine Science Tools | 91003-12 | |
Straight scissor | Roboz | RS-6702 | |
Dumont #5 fine forceps | Fine Science Tools | 11254-20 | |
Tyrodes buffer | Sigma-Aldrich | 2145-10L | Filter sterlize before use |
Sodium bicarbonate | Fisher Scientific | S233-500 | |
Vevo 770 Ultrasound Imaging system | VisualSonics, Inc. | VS-11392 | |
708 Ultrasound transducer | VisualSonics, Inc. | VS-11171 |
Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi
Izin talebiThis article has been published
Video Coming Soon
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır