Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University
Genetic modification of foods has been a controversial issue due to debated concerns over health and environmental safety. This experiment demonstrates technical understanding of how food DNA is genetically identified, allowing for educated decision making about the safety and potential dangers of using genetically modified organisms (GMOs) in food supplies.
Polymerase Chain Reaction (PCR) is used to amplify food DNA to test for the presence of genetically modified DNA in food products. Presence of specific DNA bands is detected by using gel electrophoresis to pull extracted food DNA through a 3% agarose gel, a concentration dense enough to separate the bands of DNA containing the genetically modified DNA. Several controls are used in the electrophoresis procedure to ensure DNA is successfully extracted from test foods (plant primer), and to provide known examples of both genetically modified DNA (purchased genetically modified DNA) and non-genetically modified DNA (purchased certified non-GMO food control).
1. Extraction of DNA From Food Samples
After destaining, gels can be analyzed by looking at test food lanes (Table 3) to determine if the DNA bands for the 35S promoter and NOS terminator genes are present in the known locations on the gel. Placing the gel on a UV light box can help provide increased contrast (Figure 1). Alternatively, gels can be placed on white or yellow paper to provide a contrasting background to highlight DNA bands (Figure 2).
Log in or to access full content. Learn more about your institution’s access to JoVE content here
Polymerase Chain Reaction (PCR) is used to amplify DNA, allowing for a wide range of DNA lab testing. One area of testing now possible with PCR is to identify GMOs by testing for presence or absence of the DNA sequences used in the genetic modification of food crops. Typically, a crop is genetically modified to confer an advantage against natural deterrents to ideal yields, e.g. pests (Figure 3), diseases, drought conditions (Figure 4), etc. Because the advantage is gained by in
Skip to...
Videos from this collection:
Now Playing
Environmental Science
88.3K Views
Environmental Science
79.0K Views
Environmental Science
48.9K Views
Environmental Science
11.8K Views
Environmental Science
21.8K Views
Environmental Science
51.7K Views
Environmental Science
35.4K Views
Environmental Science
54.9K Views
Environmental Science
38.2K Views
Environmental Science
26.0K Views
Environmental Science
29.6K Views
Environmental Science
123.8K Views
Environmental Science
28.8K Views
Environmental Science
213.9K Views
Environmental Science
16.3K Views
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved