Sign In

17.8 : Frost Circles for Different Conjugated Systems

The inscribed polygon method is consistent with Hückel’s 4n + 2 rule and helps to learn whether the given cyclic compound is aromatic or not. The compound is stable and aromatic if every bonding molecular orbital (MO) is completely filled with a pair of electrons. However, if the non-bonding or antibonding orbitals are filled with electrons, the compound is unstable and not aromatic. Consider the Frost circle diagrams for cycloalkenes containing 4 to 8 carbons.

Figure1

By looking at the Frost circles, it is observed that the number of bonding MO is always odd, and the required number of π electrons in the bonding MO is either 2 or 6. The number of electrons perfectly satisfies the 4n + 2 rule of aromaticity. Hence, the compounds with completely filled bonding MO are aromatic.

In the case of four-membered cyclobutadiene with 4π electrons and eight-membered cyclooctatetraene with 8π electrons, the bonding MO are completely filled, and each of the non-bonding MO is singly occupied. The presence of electrons in high-energy non-bonding MO makes them unstable and not aromatic. However, the five-membered cyclopentadienyl anion, six-membered benzene, and seven-membered cycloheptatrienyl cation have 6π electrons, and the corresponding bonding MO are fully occupied and stable, so they are aromatic.

Overall, molecules having completely filled bonding molecular orbitals are considered aromatic, whereas compounds with electrons in orbitals other than bonding are not aromatic.

Tags
Frost CirclesConjugated SystemsAromaticityH ckel s RuleBonding Molecular OrbitalNon bonding OrbitalsCycloalkenesCyclobutadieneCyclooctatetraeneCyclopentadienyl AnionBenzeneCycloheptatrienyl Cation4n 2 RuleStability

From Chapter 17:

article

Now Playing

17.8 : Frost Circles for Different Conjugated Systems

Aromatic Compounds

2.3K Views

article

17.1 : Aromatic Compounds: Overview

Aromatic Compounds

7.9K Views

article

17.2 : Nomenclature of Aromatic Compounds with a Single Substituent

Aromatic Compounds

6.2K Views

article

17.3 : Nomenclature of Aromatic Compounds with Multiple Substituents

Aromatic Compounds

5.8K Views

article

17.4 : Structure of Benzene: Kekulé Model

Aromatic Compounds

7.0K Views

article

17.5 : Structure of Benzene: Molecular Orbital Model

Aromatic Compounds

6.3K Views

article

17.6 : Criteria for Aromaticity and the Hückel 4n + 2 Rule

Aromatic Compounds

7.7K Views

article

17.7 : Hückel's Rule Diagram of π MOs: Frost Circle

Aromatic Compounds

3.9K Views

article

17.9 : Aromatic Hydrocarbon Anions: Structural Overview

Aromatic Compounds

2.2K Views

article

17.10 : Aromatic Hydrocarbon Cations: Structural Overview

Aromatic Compounds

2.3K Views

article

17.11 : Five-Membered Heterocyclic Aromatic Compounds: Overview

Aromatic Compounds

3.1K Views

article

17.12 : NMR Spectroscopy of Aromatic Compounds

Aromatic Compounds

3.8K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved