Sign In

Hydrocarbons such as alkanes, alkenes, and alkynes show characteristic C–H stretching absorption bands. These IR stretching frequencies depend on the hybridization of the involved carbon atom and can be explained in terms of the s character of each hybridized atomic orbital.

Among the sp, sp2, and sp3 hybridized orbitals, sp orbitals have the maximum s character (50%). Consequently, the electrons are held more closely to the nucleus, resulting in stronger and shorter C–H bonds that stretch at a higher frequency compared to sp2 and sp3 hybridized carbon atoms. Indeed, the observed C–H stretching frequencies are 3300 cm−1 (sp), 3100 cm−1 (sp2), and below 3000 cm−1 (sp3). It is worth noting that sp2 C–H and sp C–H stretching absorption bands are not observed for tetra-substituted alkenes and internal alkynes, respectively.

From Chapter 13:

article

Now Playing

13.6 : IR Absorption Frequency: Hybridization

Molecular Vibrational Spectroscopy

424 Views

article

13.1 : Infrared (IR) Spectroscopy: Overview

Molecular Vibrational Spectroscopy

743 Views

article

13.2 : IR Spectroscopy: Molecular Vibration Overview

Molecular Vibrational Spectroscopy

1.2K Views

article

13.3 : IR Spectroscopy: Hooke's Law Approximation of Molecular Vibration

Molecular Vibrational Spectroscopy

646 Views

article

13.4 : IR Spectrometers

Molecular Vibrational Spectroscopy

588 Views

article

13.5 : IR Spectrum

Molecular Vibrational Spectroscopy

549 Views

article

13.7 : IR Absorption Frequency: Delocalization

Molecular Vibrational Spectroscopy

465 Views

article

13.8 : IR Frequency Region: X–H Stretching

Molecular Vibrational Spectroscopy

701 Views

article

13.9 : IR Frequency Region: Alkyne and Nitrile Stretching

Molecular Vibrational Spectroscopy

505 Views

article

13.10 : IR Frequency Region: Alkene and Carbonyl Stretching

Molecular Vibrational Spectroscopy

471 Views

article

13.11 : IR Frequency Region: Fingerprint Region

Molecular Vibrational Spectroscopy

474 Views

article

13.12 : IR Spectrum Peak Intensity: Amount of IR-Active Bonds

Molecular Vibrational Spectroscopy

437 Views

article

13.13 : IR Spectrum Peak Intensity: Dipole Moment

Molecular Vibrational Spectroscopy

446 Views

article

13.14 : IR Spectrum Peak Broadening: Hydrogen Bonding

Molecular Vibrational Spectroscopy

486 Views

article

13.15 : IR Spectrum Peak Splitting: Symmetric vs Asymmetric Vibrations

Molecular Vibrational Spectroscopy

504 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved