When a carbonyl compound is treated with a strong base, the α position gets deprotonated to give a resonance-stabilized intermediate called an enolate. Enolates are ambident nucleophiles because they possess two nucleophilic sites that can attack an electrophile owing to the delocalization of the negative charge between the α carbon and oxygen atoms. When the oxygen atom attacks an electrophile, it is called O-attack, whereas electrophilic attack via the α carbon is known as C-attack.
C-attack is much more common than O-attack despite the negative charge being more localized on the oxygen atom. (Recall that for a set of contributing structures with a negative charge on different atoms, the contributing structure with the negative charge on the most electronegative atom will usually most closely resemble the true structure.) As a result, there are two distinct conventions in drawing the C-attack mechanism:
The carbanion mechanism convention is more simplistic in representation because it needs fewer curved arrows, but both conventions are widely used.
From Chapter 15:
Now Playing
α-Carbon Chemistry: Enols, Enolates, and Enamines
1.8K Views
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.5K Views
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.2K Views
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.0K Views
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.3K Views
α-Carbon Chemistry: Enols, Enolates, and Enamines
1.8K Views
α-Carbon Chemistry: Enols, Enolates, and Enamines
3.2K Views
α-Carbon Chemistry: Enols, Enolates, and Enamines
3.1K Views
α-Carbon Chemistry: Enols, Enolates, and Enamines
1.7K Views
α-Carbon Chemistry: Enols, Enolates, and Enamines
3.0K Views
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.7K Views
α-Carbon Chemistry: Enols, Enolates, and Enamines
3.0K Views
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.0K Views
α-Carbon Chemistry: Enols, Enolates, and Enamines
10.4K Views
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.7K Views
See More
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved