Sign In

5.3 : Cytoplasm

The cytoplasm consists of organelles and a framework of protein scaffolds called the cytoskeleton suspended in an aqueous solution, the cytosol. The cytosol is a rich broth of water, ions, salts, and various organic molecules.

Protein Folding and Misfolding

The cytoplasm is the location for several cellular processes, including protein synthesis and folding. The aqueous nature of the cytosol promotes protein folding such that the hydrophobic amino acid side chains are buried in the protein core while the hydrophilic amino acids face the cytosol. However, cellular stresses such as aging and changes in pH, temperature, or osmolarity can cause protein misfolding. Misfolded proteins may amass together in the cytoplasm to form insoluble protein aggregates. Such aggregates are implicated in neurodegenerative disorders, such as Alzheimer's and Parkinson's disease.

Cytoskeleton Composition and Function

The eukaryotic cytoskeleton consists of three types of filamentous proteins — microtubules, microfilaments, and intermediate filaments.

Microtubules, the largest type of filaments, are made up of the protein tubulin. They are dynamic structures that can grow or shrink by adding or removing tubulin molecules from the ends of their strands. They provide structural stability to the cell and act as tracks for transporting proteins, vesicles, and certain organelles within the cell. In addition, microtubules play a crucial role in cell division by providing a framework that guides chromosomes to opposite ends of the cell.

Microfilaments, or actin filaments, are smaller cytoskeletal filaments made up of a protein called actin. Actin proteins can assemble and disassemble rapidly to form filaments. Therefore, they enable motility in unicellular organisms like amoeba or the migration of white blood cells to sites of infection. In skeletal muscle cells, actin filaments slide along myosin filaments to mediate muscle contraction.

Intermediate filaments are not as dynamic as microtubules or actin filaments. However, like the other two types of filaments, they also provide structural support to the cell. Intermediate filaments are composed of different types of proteins based on the specific cell type. For instance, intermediate filaments in hair and nails contain keratin, whereas, in muscle cells, these filaments are made of desmins.

Tags
CytoplasmCellular FluidCell StructureOrganellesCytosolBiological ProcessesCell Function

From Chapter 5:

article

Now Playing

5.3 : Cytoplasm

Cells and their Components

4.7K Views

article

5.1 : What are Cells?

Cells and their Components

1.5K Views

article

5.2 : Cell Diversity

Cells and their Components

2.3K Views

article

5.4 : The Nucleus

Cells and their Components

1.0K Views

article

5.5 : The Nucleosome

Cells and their Components

1.0K Views

article

5.6 : The Nucleosome Core Particle

Cells and their Components

710 Views

article

5.7 : Chromatin Packaging

Cells and their Components

16.2K Views

article

5.8 : The Endoplasmic Reticulum

Cells and their Components

1.3K Views

article

5.9 : Golgi Apparatus

Cells and their Components

1.6K Views

article

5.10 : Lysosomes

Cells and their Components

1.3K Views

article

5.11 : Mitochondria

Cells and their Components

1.4K Views

article

5.12 : Mitochondrial Membranes

Cells and their Components

873 Views

article

5.13 : Peroxisomes

Cells and their Components

735 Views

article

5.14 : Ribosomes

Cells and their Components

1.3K Views

article

5.15 : The Proteasome Structure

Cells and their Components

474 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved