Sign In

7.14 : Cable: Problem Solving

When dealing with a cable that is fixed to two supports and subjected to uniform loading, it is crucial to determine the maximum tension in the cable. This process can be broken down into several key steps, as outlined below:

Figure 1

Analyze the problem: Begin by understanding the given scenario and the conditions of the cable. Identify the supports, the type of loading, and any other relevant information.

Determine the cable's shape equation: Use the principles of equilibrium and the cable's properties to establish the shape equation that describes the cable's curve. This equation relates the cable's shape to the applied load.

Equation 1

Integrate the equation: Integrate the shape equation to obtain a function that represents the shape of the cable. This integration process allows you to determine the constants in the equation. By applying the boundary conditions at the origin, the value of one of the integration constants can be determined.

Equation 2

Find the slope: Take the first derivative of the cable's shape equation to determine the slope of the cable at any given point. Apply the boundary conditions for the slope at the origin to obtain the value of another integration constant.

Calculate the horizontal tensile force: By substituting the integration constants and the position coordinates of the support into the shape equation. Rearrange the terms to find the horizontal tensile force acting on the cable.

Equation 3

Determine the angle: Use the slope equation to calculate the angle of the cable at various points. Find the location along the cable where the angle is at its maximum, usually near the supports. Utilize trigonometric relationships to express the maximum tension in terms of the horizontal tensile force and the angle of the cable.

Equation 4

Find the maximum tension: Substitute the horizontal tension equation and the known values into the maximum tension equation. This will allow you to calculate the maximum tension in the cable.

Equation 5

Tags
Cable TensionProblem SolvingUniform LoadingShape EquationEquilibrium PrinciplesIntegration ProcessSlope DeterminationHorizontal Tensile ForceTrigonometric RelationshipsMaximum Tension Calculation

From Chapter 7:

article

Now Playing

7.14 : Cable: Problem Solving

Internal Forces

254 Views

article

7.1 : Sign Convention

Internal Forces

1.5K Views

article

7.2 : Normal and Shear Force

Internal Forces

1.6K Views

article

7.3 : Bending and Torsional Moments

Internal Forces

2.8K Views

article

7.4 : Internal Loadings in Structural Members: Problem Solving

Internal Forces

1.0K Views

article

7.5 : Beams

Internal Forces

1.1K Views

article

7.6 : Shear Diagram

Internal Forces

436 Views

article

7.7 : Bending Moment Diagram

Internal Forces

679 Views

article

7.8 : Relation Between the Distributed Load and Shear

Internal Forces

344 Views

article

7.9 : Relation Between the Shear and Bending Moment

Internal Forces

670 Views

article

7.10 : Shear and Bending Moment Diagram: Problem Solving

Internal Forces

949 Views

article

7.11 : Cable Subjected to Concentrated Loads

Internal Forces

656 Views

article

7.12 : Cable Subjected to a Distributed Load

Internal Forces

515 Views

article

7.13 : Cable Subjected to Its Own Weight

Internal Forces

310 Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved