JoVE Logo
Faculty Resource Center

Sign In

Development of a Multicellular Three-dimensional Organotypic Model of the Human Intestinal Mucosa Grown Under Microgravity

DOI :

10.3791/54148-v

July 25th, 2016

July 25th, 2016

9,655 Views

1Center for Vaccine Development, Department of Pediatrics, University of Maryland School of Medicine, 2Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children

Cells growing in a three-dimensional (3-D) environment represent a marked improvement over cell cultivation in 2-D environments (e.g., flasks or dishes). Here we describe the development of a multicellular 3-D organotypic model of the human intestinal mucosa cultured under microgravity provided by rotating-wall-vessel (RWV) bioreactors.

-- Views

Related Videos

article

Alginate Microcapsule as a 3D Platform for Propagation and Differentiation of Human Embryonic Stem Cells (hESC) to Different Lineages

article

Microbial Control and Monitoring Strategies for Cleanroom Environments and Cellular Therapies

article

Quantitative Characterization of Liquid Photosensitive Bioink Properties for Continuous Digital Light Processing Based Printing

article

A Novel Cell Injection Method with Minimum Invasion

article

Soybean Hairy Root Transformation for the Analysis of Gene Function

article

In Vitro Selection of Engineered Transcriptional Repressors for Targeted Epigenetic Silencing

article

Author Spotlight: Advances in Evaluating Human Lung Epithelial Cells' Response to Metal-Organic Frameworks

article

Simple Establishment of a Vascularized Osteogenic Bone Marrow Niche Using Pre-Cast Poly(ethylene Glycol) (PEG) Hydrogels in an Imaging Microplate

article

Author Spotlight: Understanding Chronic Lung Diseases Using 3D Printed Phototunable Hydrogels

article

Author Spotlight: Advancing Eye Physiology Research via a Multi-Channel Flow Culture for Optimal Tissue Maintenance and Real-Time Assessment

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved