A subscription to JoVE is required to view this content. Sign in or start your free trial.
Different, complex animal models exist to study the pathophysiology of acute respiratory distress syndrome (ARDS). Bronchoalveolar lavage and oleic acid injection induced lung injury is suitable as a new double-hit animal model for studying the acute respiratory distress syndrome.
The treatment of ARDS continues to pose major challenges for intensive care physicians in the 21st century with mortality rates still reaching up to 50% in severe cases. Further research efforts are needed to better understand the complex pathophysiology of this disease. There are different well-established animal models to induce acute lung injury but none has been able to adequately mimic the complex pathomechanisms of ARDS. The most crucial factor for the development of this condition is the damage to the alveolar capillary unit. The combination of two well-established lung injury models allow us to mimic in more detail the underlying pathomechanism. Bronchoalveolar lavage (BAL) leads to surfactant depletion as well as alveolar collapse. The repeated instillation of fluid volumes causes subsequent hypoxemia. Surfactant depletion is a key factor of ARDS in humans. BAL is often combined with other lung injury approaches, but not with a second hit followed by oleic acid injection (OAI) yet. Oleic acid injection leads to severely impaired gas exchange, a deterioration of lung mechanics and disruption of the alveolo-capillary barrier. The OAI mimics most of the expected effects of ARDS consisting of extended inflammation of lung tissue with an increase of alveolar leakage and gas exchange impairment. A disadvantage of the combination of different models is the difficulty to determine the influence to the lung injury caused by BAL alone, OAI alone or both together. The model presented in this report represents the combination of BAL and OAI as a new double-hit lung injury model. This new model is easy to implement and an alternative to study different therapeutic approaches in ARDS in the future.
Acute respiratory distress syndrome (ARDS) is a disease consisting of impaired gas exchange and lung infiltration, which often needs intensive care therapy. The mortality of severe ARDS remains high (up to 50%) worldwide despite almost 50 years of extensive research1. The ARDS is defined by the Berlin Definition, including diagnostic criteria as timing, chest imaging, origin of edema and hypoxemia2. To better categorize patients with different levels of ARDS severity, three different degrees of hypoxemia are defined: mild (200 mmHg < PaO2/FIO2 ≤ 300 mmHg), moderate (100 mmHg < PaO....
All animal experiments described here have been approved by the institutional and state animal care committee (Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germany; approval number G18-1-044) and were conducted in accordance with the guidelines of the European and German Society of Laboratory Animal Sciences.
1. Anesthesia, intubation and mechanical ventilation
The PaO2/FiO2-ratio decreases after bronchoalveolar lavage and fractionated application of oleic acid (Figure 1). Because it is unclear to predict the impact of bronchoalveolar lavage (e.g., the impact of fractionated oleic acid dose) on PaO2/FiO2-ratio, it is recommended to monitor PaO2/FiO2-ratio while inducing the lung injury. Ultrafast pO2-measurement allows to monitor PaO2 in real-time and is well es.......
The described double-hit method to cause a severe lung injury in pigs is suitable to study different treatment options in ARDS. The double-hit model mimics two central elements of the pathomechanism of ARDS: loss of the alveolar-capillary unit and disruption of the endothelial barrier7. Due to the two hits, it is important to have a study protocol with predefined target values (e.g., PaO2/FiO2-ratio).
The main disadvantage of this double-hit method.......
The authors want to thank Dagmar Dirvonskis for excellent technical support.
....Name | Company | Catalog Number | Comments |
1 M Kaliumchlorid-Lösung 7.46% 20 mL | Fresenius, Kabi Deutschland GmbH | potassium chloride | |
Absaugkatheter Ideal CH14, 52 cm, gerade | B. Braun Melsungen AG, Germany | suction catheter | |
Arterenol 1 mg/mL, 25 mL | Sanofi- Aventis, Seutschland GmbH | norepinephrine | |
Atracurium Hikma, 50 mg/5 mL | Hikma Pharma GmbH , Martinsried | atracurium | |
BD Discardit II Spritze 2, 5, 10, 20 mL | Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain | syringe | |
BD Luer Connecta | Becton Dickinson Infusion Therapy AB Helsingborg, Schweden | 3-way-stopcock | |
BD Microlance 3 20 G | Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain | canula | |
Datex Ohmeda S5 | GE Healthcare Finland Oy, Helsinki, Finland | hemodynamic monitor | |
Engström Carestation | GE Heathcare, Madison USA | ventilator | |
Fentanyl-Janssen 0.05 mg/mL | Janssen-Cilag GmbH, Neuss | fentanyl | |
Führungsstab, Durchmesser 4.3 | Rüsch | endotracheal tube introducer | |
Incetomat-line 150 cm | Fresenius, Kabi Deutschland GmbH | perfusorline | |
Ketamin-Hameln 50 mg/mL | Hameln Pharmaceuticals GmbH | ketamine | |
laryngoscope | Rüsch | laryngoscope | |
logicath 7 Fr 3-lumen 30 cm lang | Smith- Medical Deutschland GmbH | central venous catheter | |
Masimo Radical 7 | Masimo Corporation Irvine, Ca 92618 USA | periphereal oxygen saturation | |
Neofox Oxygen sensor 300 micron fiber | Ocean optics Largo, FL USA | ultrafast pO2-measurements | |
Ölsäure reinst Ph. Eur NF C18H34O2 M0282.47g/mol, Dichte 0.9 | Applichem GmbH Darmstadt, Deutschland | oleic acid | |
Original Perfusor syringe 50 mL Luer Lock | B.Braun Melsungen AG, Germany | perfusorsyringe | |
PA-Katheter Swan Ganz 7.5 Fr, 110 cm | Edwards Lifesciences LLC, Irvine CA, USA | PAC | |
PE-Trichter, 60 mm | Aquintos-Wasseraufbereitung GmbH, Germany | funnel | |
Percutaneous sheath introducer set 8.5 und 9 Fr, 10 cm with integral haemostasis valve/sideport | Arrow international inc. Reading, PA, USA | introducer sheath | |
Perfusor FM Braun | B.Braun Melsungen AG, Germany | syringe pump | |
Propofol 2% 20 mg/mL (50 mL Flaschen) | Fresenius, Kabi Deutschland GmbH | propofol | |
Radifocus Introducer II, Größe 5-8 Fr | Terumo Corporation Tokio, Japan | introducer sheath | |
Rüschelit Super Safety Clear 6.5 /7.0 | Teleflex Medical Sdn. Bhd, Malaysia | endotracheal tube | |
Seldinger Nadel mit Fixierflügel | Smith- Medical Deutschland GmbH | seldinger canula | |
Sonosite Micromaxx Ultrasoundsystem | Sonosite Bothell, WA, USA | ultrasound | |
Stainless Macintosh Größe 4 | Welsch Allyn69604 | blade for laryngoscope | |
Sterofundin Infusion | B. Braun Melsungen AG, Germany | bronchoalveolar lavage | |
Stresnil 40 mg/mL | Lilly Deutschland GmbH, Abteilung Elanco Animal Health | azaperon | |
Vasofix Safety 22 G | B.Braun Melsungen AG, Germany | venous catheter |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved