JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,我们描述了一个协议,用于同时检测组蛋白修饰免疫荧光法和DNA序列的DNA荧光原位杂交,然后通过的3D显微镜和分析(3D的免疫-DNA FISH)。

摘要

荧光原位杂交DNA探针完好的三维保存的核三维激光共聚焦显微镜(3D DNA FISH)表示,最直接的方法来可视化基因位点的位置,染色体的次区域或整个地区的单个细胞。这种类型的分析提供洞察全球架构的细胞核,以及特定的基因组位点的行为和地区内的核空间。免疫荧光法,另一方面,允许核蛋白质(修饰组蛋白,组蛋白变体和改性剂,转录机械因素,核分舱室,等)的检测。免疫荧光和3D的DNA结合FISH的主要挑战是,一方面要保留的表位,以及由抗体检测的细胞核的3D架构上,另一方面,允许渗透的DNA探针来检测基因位点或染色体地区1-5。在这里,我们提供了一个协议,它结合了可视化的三维保存的核染色质修饰与基因位点在。

引言

表观遗传机制的发育和细胞类型特异的转录图谱的的触发建立和继承。在一个层面上,这涉及到调制的定义激活或沉默的基因组区域的染色质包装。在一个规模较大的基因组和核架构,全球3D组织也发挥了作用,在控制转录模式。因此,解剖这些表观基因的功能是必不可少的一个全面的了解基因是如何调控6-11。

结合免疫荧光和三维DNA鱼类提供了一个独特的机会,以补充分子生物学和生物化学的分析评估特定的DNA序列和/或细胞核内的蛋白质的相互作用/协会。此外,在全基因组高通量技术,如染色质免疫沉淀(ChIP-seq的)或染色体捕捉构象的深度测序(4C-seq技术,5C,加上HI-C)提供全球性的DAT一的细胞群12,免疫荧光/ DNA荧光原位杂交技术在单细胞水平上能够进行分析。

在这里,我们描述了一个协议,用于同时检测组蛋白修饰免疫荧光法和DNA序列的DNA荧光原位杂交,然后通过的3D显微镜和分析(3D免疫FISH)。此协议的优点是DNA和保存的蛋白质结构的组合的可视化。我们在这一领域的经验,使我们能够改进和简化现有的协议。虽然我们已经使用该协议来检测在淋巴细胞发生重组的DNA双链断裂,该方法可以应用到其他的蛋白质和其他细胞类型。

研究方案

1。 DNA探针标记荧光基团::尼克翻译(约6小时)

  1. 清洁的BAC DNA(其制备由马克西制备)或质粒或PCR产物,所有的再悬浮在H 2 O中,可用于标记, 请注意 ,一个强大的FISH信号,探针应跨越至少10 kb的。
  2. 孵育DNA的RNA酶A中的30分钟,在37℃( 表1中列出的所有试剂)。
  3. 在16°C孵育2小时缺口翻译反应(见表2和表3)。直接标记的替代方法,可以使用(实施例:FISH标签,Invitrogen公司)。
  4. 失活反应1小时,在-80℃或-20℃下过夜
  5. 确定探头的尺寸,在2%琼脂糖凝胶上。涂片应介于100和1000bp的,与多数在约300-500 bp的( 请注意 ,在涂抹的Cy5探针是不可见的)。如果是不能消化足够的DNA,DNA聚合酶I和DNA酶I可以加入到该反应,并在16℃下温育两小时
  6. 在两升的烧杯中,充满了H 2 0 2小时在黑暗中的0.025毫米过滤器净化探针。
  7. 添加阻断因素的探针如下:婴儿床-1的DNA的10微克,10微克Hybloc DNA,鲑鱼精子DNA探针的10微克和100微克。 DNA探针存储于-20℃下

2。探头沉淀/变性/预退火(3-4小时)

  1. 之间的0.3微克,1微克的DNA探针是用于每盖玻片。用0.1倍体积的3M乙酸钠(pH 5.2)和2.5倍体积的100%乙醇的混合探针,温育1小时,在-80℃或在-20℃下过夜,降速以13,000 rpm在4℃下30分钟。 请注意 ,根据质量的DNA和杂交的核区域,DNA探针的量可被调整。直接标记的替代方法,可以允许使用的减少量的探头。有关一个幻灯片的多个DNA FISH信号的检测,不同的探针可以一起沉淀(除了这不应该是预退火后,类似重复序列)的探针。也可以在同一时间进行的几个实验的探针一起沉淀。浅色的颗粒应根据荧光(如果少量的探针沉淀,沉淀可能是不可见的)。
  2. 干燥颗粒,并重新悬浮于15μl杂交缓冲液( 见表4)每盖玻片振荡(使用的Eppendorf恒温)在黑暗中于37-45℃(约20分钟)。
  3. 为5分钟,在75-95℃下的变性探针
  4. 预退火的探针在37℃下30-60分钟。可调节长度的预退火,根据探针的复杂性和质量。
  5. 将探针杂交过夜的盖玻片(见第3节)。

3。 3二维DNA FISH - 第一天(约3小时)

  1. 非粘附细胞在小体积的1x PBS(〜2×10 5个细胞在5-10微升1×PBS中,每盖玻片)浓缩和丢弃的中心上的聚-L-赖氨酸涂布的盖玻片。应培养贴壁细胞的盖玻片上,在至少24小时(〜70%汇合)(盖玻片可涂覆有0.1%明胶)。广场18x18的24-24毫米的盖玻片放置在6孔培养板中,并在整个协议,两个毫升的各溶液中,每孔使用(可以放置在12/24-well板交替圆1.5毫米盖玻片)。
  2. 修复细胞在2%多聚甲醛/ 1×PBS,pH值为7-7.4,在RT(4%PFA股票可以等分,储存在-20℃下)10分钟。在溶液中可以购买多聚甲醛(16%),或4%的股份解决方案,可制取粉末/小球。多聚甲醛的粉末溶解在1x PBS,在> 60°C(可提高pH值至8-9,以促进溶解),在冰上的液冷式,调整pH至7-7.4,过滤,分装在隼周贮存于-20℃下
  3. 三个在1x PBS漂洗后,透性细胞在冰冷的0.4%的Triton-X-100/1×PBS中,在冰上5分钟。调整长度的通透性,根据细胞类型。 注意 :,DNA FISH与免疫相结合,应进行免疫组化,在这个阶段(见第4章 )。
  4. 三个在1x PBS漂洗,孵育细胞后,与0.1微克/微升的核糖核酸酶A在1x PBS,1小时,在37℃下盖玻片置于细胞的一面朝下下降了100μl的解决方案封口膜在潮湿的室内或幻灯片上。盖玻片,然后小心地用钳子取出。如果任何遇到阻力,盖玻片应被淹没用1×PBS,以避免损坏细胞。
  5. 三个在1x PBS漂洗后,在冰冷的0.7%的Triton-X-100 / 0.1 M盐酸透性细胞在冰上10分钟。
  6. 经过三次冲洗我Ň1X PBS,在1.9 M HCl 30分钟,在室温下变性细胞。或者,细胞可以在50%甲酰胺/ 2×SSC中变性,在75-80℃下至少30分钟。 请注意 ,杂交的长度(和温度)取决于细胞类型可被优化。
  7. 三个在冰冷的1×PBS中漂洗后,在一个黑暗,潮湿的腔室中,在37℃下过夜,与探针杂交的细胞。盖玻片放置单元侧下降到滴15μl的探针在幻灯片上,并密封与橡胶水泥。

4。 3维免疫FISH - 第一天(约6-7小时)

  1. 结合免疫荧光/ DNA的FISH,免疫染色后应进行0.4%的Triton-X-100( 步骤3.3)中的通透性。
  2. 孵育细胞30分钟,在RT(2.5%牛血清白蛋白(BSA),10%正常山羊血清,0.1%Tween-20的)的封闭溶液。阻挡的溶液过滤,等分在1.5ml Eppendorfs和存储为months于-20℃下
  3. 孵育细胞与第一抗体反对封闭溶液稀释的感兴趣的蛋白或组蛋白修饰,在潮湿的腔室在RT 1小时。在这里,我们将展示的例子中的抗体对磷酸化丝氨酸139 H2AX(γ-H2AX,Millipore公司的详细信息,请参阅表5)。盖玻片置于细胞的一面朝下下降了100μl的解决方案封口膜在潮湿的室内或幻灯片上。盖玻片然后小心地用钳子(充斥如有必要,用1×PBS)除去注意的抗体和细胞类型的质量取决于稀释和孵化长度可以调整。
  4. 洗涤细胞,在0.2%BSA / 0.1%的Tween-20/1×3倍的PBS中,在RT下振摇5分钟。
  5. 孵育细胞与稀释在封闭溶液在RT 1小时在一个黑暗,潮湿的腔室中的相应的荧光团共轭的次级抗体。这里,我们表明检测的一个例子与次要的羊抗鼠抗体(的Alexa Fluor 488或555,Invitrogen公司的详细信息,请参阅表5)。半抗原缀合的第二抗体(生物素,地高辛等),也可以使用。在这种情况下,一个额外的步骤,用于适当的检测(链霉抗生物素蛋白,抗挖,等)可以被执行之前或之后,过晚DNA-FISH杂交。
  6. 漂洗细胞在0.1%的Tween-20/1×PBS中,3次5分钟的在RT振荡在黑暗中。
  7. 修复后的细胞在2%多聚甲醛/ PBS洗涤10分钟,在室温下,在黑暗中。
  8. 继续DNA FISH以上核糖核酸酶A(3.4)从孵化。

5。 3维DNA FISH /免疫FISH - 第二日(约2小时)

  1. 小心地取出橡皮泥,洪水盖玻片用2×SSC,用钳子小心地取出,并将其放置在洗涤液孔中。
  2. 洗涤细胞2倍SSC,30分钟,37°C振荡在黑暗中。
  3. 洗涤细胞2倍SSC在室温为30分钟,在黑暗中晃动。
  4. 在1x SSC洗涤细胞,在黑暗下振荡30分钟,在RT。 请注意,在用甲酰胺变性的情况下,清洗应该由下列替代:洗涤3次,在50%甲酰胺/ 2×SSC洗涤3次,在2×SSC,5最小,在37°C。
  5. 挂载的ProLong黄金安装介质,含有1.5微克/毫升的DAPI(4,6 - 二脒基-2 - 苯基吲哚)对染的总DNA的细胞。下降10-15μl的安装介质上的幻灯片上,盖玻片放在细胞和密封的指甲油。幻灯片数月保持在-20°C

6。的3D显微镜和分析

  1. 不同的显微镜系统,三维图像可以被收购。在我们的实验中,0.3微米的光学部分分离,收集上的Leica SP5 AOBS的共聚焦系统(声光分束器) 之间的分离光学升飞机可以调整取决于分析的类型。
  2. 3D图像栈可以使用不同的软件和工具进行分析。我们使用Image J软件进行评估利益的位点之间的距离测量和分析不同类型的利益与核车厢或蛋白质的基因位点的关联。
  3. 进行所有的统计分析来比较两个(或更多)不同的生物与成对评估(s)的意义:不同的细胞类型或阶段之间的比较,比较的利益的不同基因座之间的条件。在所有的统计检验,P值≤5.00E-2(α= 0.05),是显着的(1.00E-2≤P≤5.00E-2 *显著; 1.00E-3≤P≤1.00E-2 * *非常显著,P <1.00E-3 ***非常显着)。

两个等位基因之间的距离在整个分布的统计分析,我们第一个c累积分布频率曲线onstruct的整个范围内的测量之间的距离的两个alleles.To评估我们使用非参数两样本Kolmogorov-Smirnov测试(KS)13,14的实证等位基因间的距离的分布中的差异的意义。

统计分析的两个等位基因的最佳距离截止密切的联系(即配对)。要确定范围内的最强大的两个等位基因位点之间的距离差异,我们采用了一系列的双尾Fisher精确检验15秒 。也就是说,在每个测量距离我们测试一个条件是否显着超额代表在较短的两个样本之间的距离。的最小 P值的分布中表示的范围内的距离,应被看作是密切关联的两个等位基因( 配对)的截止。随后,双尾Fisher精确检验采用tØ评估在识别cut-off值15的配对两个等位基因的意义。多次测试修正被应用到占总数的费舍尔测试的执行16。

利益与核车厢或蛋白质的轨迹协会的统计分析。,双尾费舍尔精确的测试是用来分析的意义协会感兴趣的轨迹与不同的车厢或蛋白质15。

结果

DNA和免疫-FISH用于的Skok实验室,研究的过程中,V(D)J重组抗原受体位点在B和T淋巴细胞的发展与核组织的变化。上面详述的技术使我们ⅱ)到i)之间的测量距离的两个端部的轨迹(收缩)之间的测量距离的等位基因或基因座(配对),iii)分析内发生的位点的DNA损伤,ⅳ)评估的等位基因的位置位点相对于核分室(在我们的研究的镇压着丝粒异染色质),及v)评估协会的细胞核蛋白的基因和?...

讨论

上面详细介绍了在我们的实验室中使用的技术分析的调节V(D)J重组的免疫球蛋白TCRA / D位点在发展中淋巴细胞30,31。我们相信,这种技术可以适用于不同的核蛋白质,核车厢及基因位点的检测,在不同的细胞类型。协议的修改可能是必要的,而且在这种情况下的主要步骤,集中有以下几种。首先,可以调整长度通透性取决于细胞类型。二初级抗体孵育的长度也可以被调整?...

披露声明

作者宣称,他们没有竞争的金融利益。

致谢

我们要感谢Skok实验室,特别是苏珊娜·休伊特,成员的讨论和意见。这项工作是由美国国家卫生补助R01GM086852,RC1CA145746(JAS)的支持。 JAS是一个白血病和淋巴瘤协会的学者。 JC是欧文顿研究所的癌症研究所的研究员。 MM是由美国国家科学基金会资助中西医结合研究生教育和研究培训实习(IGERT 0333389 NSF)的支持。

材料

NameCompanyCatalog NumberComments
的试剂/材料名称 公司 目录编号 评论
H 2 O 费舍尔 #BP2470
核糖核酸酶A 西格玛 #R4642
DNTP 西格玛 #DNTP100
Alexa的原位 Invitrogen公司 #C11397 C-11401
Cy3或Cy5的dUTP 费舍尔 #45-001-XXX
DNA酶I 罗氏公司 #04536282001
DNA聚合酶I 生物实验室 #M0209
0.025微米的过滤器 MilliporË #VSWP02500
COT-1 DNA 1毫克/毫升 Invitrogen公司 #18440
hybloc DNA的1毫克/毫升应用遗传 #MHB
鲑鱼精西格玛 #D1626 粉末的再悬浮在H 2 O在10毫克/毫升
乙酸钠(醋酸钠,pH值5.2,缓冲溶液) 西格玛 #S7899
FICOLL 400(分子生物学级) 费舍尔排名第525
聚乙烯吡咯烷酮(分子生物学级) 费舍尔 #BP431
硫酸葡聚糖粉末西格玛 #D8906
亚急性硬化性全脑炎(盐磷酸钠EDTA)20倍的解决方案费舍尔 #BP1328
甲酰胺费舍尔 #BP227
盖玻片费舍尔 #12-548-B
幻灯片费舍尔 #12-550
6 - 孔板费舍尔 #0720080
PBS,10 费舍尔 #MT-46-013-CM
聚-L-赖氨酸水溶液西格玛 #P8920
多聚甲醛,小球状,95%; 西格玛 #441244
的Triton-X-100,分子生物学级西格玛 #T8787
BSA(牛血清白蛋白)馏分V 费舍尔 #BP 1600
正常山羊血清矢量实验室 #S-1000
吐温20,分子生物学级西格玛 #P9416
的SSC(盐柠檬酸钠)20倍的解决方案费舍尔 #BP1325
延长Gold抗淬灭试剂 Invitrogen公司 #P36930
DAPI(4',6 - 二脒基-2 - 苯基吲哚) 西格玛 #D9542
最好的测试涂层橡胶水泥艺术或办公用品店
表1。特定的试剂和小型设备。

参考文献

  1. Chaumeil, J., Okamoto, I., Heard, E. X-chromosome inactivation in mouse embryonic stem cells: analysis of histone modifications and transcriptional activity using immunofluorescence and FISH. Methods in enzymology. , 376-405 (2004).
  2. Cremer, M., et al. Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol. Biol. 463, 205-239 (2008).
  3. Chaumeil, J., Augui, S., Chow, J. C., Heard, E. Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation. Methods Mol. Biol. 463, 297-308 (2008).
  4. Solovei, I., Cremer, M. 3D-FISH on cultured cells combined with immunostaining. Methods Mol. Biol. 659, 117-126 (2010).
  5. Markaki, Y. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. BioEssays : news and reviews in molecular, cellular and developmental biology. 34, 412-426 (2012).
  6. Heard, E., Bickmore, W. The ins and outs of gene regulation and chromosome territory organisation. Current opinion in cell biology. 19, 311-316 (2007).
  7. Misteli, T. Beyond the sequence: cellular organization of genome function. Cell. 128, 787-800 (1016).
  8. Fraser, P., Bickmore, W. Nuclear organization of the genome and the potential for gene regulation. Nature. 447, 413-417 (2007).
  9. Cremer, T., et al. Chromosome territories--a functional nuclear landscape. Current opinion in cell biology. 18, 307-316 (2006).
  10. Mao, Y. S., Zhang, B., Spector, D. L. Biogenesis and function of nuclear bodies. Trends in genetics : TIG. 27, 295-306 (2011).
  11. Dostie, J., Bickmore, W. A. Chromosome organization in the nucleus - charting new territory across the Hi-Cs. Current opinion in genetics & development. 22, 125-131 (2012).
  12. van Steensel, B., Dekker, J. Genomics tools for unraveling chromosome architecture. Nature. 28, 1089-1095 (2010).
  13. Massey, F. J. The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association. 253, 1951 (1951).
  14. Collins, A., et al. RUNX transcription factor-mediated association of Cd4 and Cd8 enables coordinate gene regulation. Immunity. 34, 303-314 (2011).
  15. Fisher, R. A. On the interpretation of χ2 from contingency tables, and the calculation of P. Journal of the Royal Statistical Society. 85, 87-94 (1922).
  16. Benjamini, Y. H., Yosef, Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological). 57, 125-133 (1995).
  17. Fitzsimmons, S. P., Bernstein, R. M., Max, E. E., Skok, J. A., Shapiro, M. A. Dynamic changes in accessibility, nuclear positioning, recombination, and transcription at the Igkappa locus. J. Immunol. 179, 5264-5273 (2007).
  18. Fuxa, M., et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411-422 (2004).
  19. Goldmit, M. Epigenetic ontogeny of the Igk locus during B cell development. Nature. 6, 198-203 (2005).
  20. Hewitt, S. L. Association between the Igk and Igh immunoglobulin loci mediated by the 3' Igk enhancer induces 'decontraction' of the Igh locus in pre-B cells. Nature. 9, 396-404 (2008).
  21. Johnson, K. IL-7 Functionally Segregates the Pro-B Cell Stage by Regulating Transcription of Recombination Mediators across Cell Cycle. Journal of Immunology. , (2012).
  22. Karnowski, A., et al. Silencing and nuclear repositioning of the lambda5 gene locus at the pre-b cell stage requires Aiolos and OBF-1. PLoS ONE. 3, e3568 (2008).
  23. Kosak, S. T. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science. 296, 158-162 (2002).
  24. Liu, H., et al. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev. 21, 1179-1189 (2007).
  25. Parker, M. J. The pre-B-cell receptor induces silencing of VpreB and lambda5 transcription. Embo J. 24, 3895-3905 (2005).
  26. Roldan, E., et al. Locus 'decontraction' and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nature immunology. 6, 31-41 (2005).
  27. Skok, J. A. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nature. 2, 848-854 (2001).
  28. Skok, J. A. Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nature immunology. 8, 378-387 (2007).
  29. Xiang, Y., Zhou, X., Hewitt, S. L., Skok, J. A., Garrard, W. T. A multifunctional element in the mouse Igkappa locus that specifies repertoire and Ig loci subnuclear location. Journal of Immunology. 186, 5356-5366 (2011).
  30. Hewitt, S. L. RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nature immunology. 10, 655-664 (2009).
  31. Deriano, L., et al. The RAG2 C terminus suppresses genomic instability and lymphomagenesis. Nature. 471, 119-123 (2011).
  32. Brown, K. E., Baxter, J., Graf, D., Merkenschlager, M., Fisher, A. G. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Molecular cell. 3, 207-217 (1999).
  33. Fernandez-Capetillo, O., Lee, A., Nussenzweig, M., Nussenzweig, A. H2AX: the histone guardian of the genome. DNA repair. 3, 959-967 (2004).
  34. Croft, J. A., et al. Differences in the localization and morphology of chromosomes in the human nucleus. The Journal of cell biology. 145, 1119-1131 (1999).
  35. Chaumeil, J., Le Baccon, P., Wutz, A., Heard, E. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev. 20, 2223-2237 (2006).
  36. Walter, J., et al. Towards many colors in FISH on 3D-preserved interphase nuclei. Cytogenetic and genome research. 114, 367-378 (2006).
  37. Toomre, D., Bewersdorf, J. A new wave of cellular imaging. Annual review of cell and developmental biology. 26, 285-314 (2010).
  38. Schermelleh, L., Heintzmann, R., Leonhardt, H. A guide to super-resolution fluorescence microscopy. The Journal of cell biology. 190, 165-175 (2010).
  39. Dobbie, I. M. OMX: a new platform for multimodal, multichannel wide-field imaging. Cold Spring Harbor protocols. , 899-909 (2011).
  40. Boyle, S., Rodesch, M. J., Halvensleben, H. A., Jeddeloh, J. A., Bickmore, W. A. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology. 19, 901-909 (2011).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

72

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。