登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本文介绍了有序的镍nanofoams 通过电镀金属沉积制备从上自组装嵌段共聚物为基础获得的超分子纳米多孔模板。

摘要

纳米多孔金属泡沫体具有以下特性的独特组合, - 它们的催化活性,热和电传导性,而且,具有高孔隙率,高的表面与体积之和的强度 - 重量比。不幸的是,用于制备金属纳米结构的常见的方法使材料具有高度无序的结构,它可能对它们的机械性能有不利影响。嵌段共聚物具有的能力,以自组装成有序的纳米结构,并且可以作为用于良好有序金属nanofoams制备模板被应用。这里我们描述的嵌段共聚物为基础的超分子复合物的应用-聚苯乙烯- 嵌段 -聚(4 -乙烯基吡啶)(十五烷基)共聚物PS-b-P4VP(PDP) -作为前体为良序镍nanofoam。超分子复合物表现出类似传统嵌段共聚物的相行为,可以自组装成的双连续gyroid形态机智放置在P4VP(PDP)矩阵H两个PS网络。 PDP可以被溶解在乙醇中,导致可与金属回填多孔结构的形成。利用无电解镀法,镀镍可被插入到模板的通道。最后,将剩余的聚合物可通过从产生纳米多孔泡沫镍与逆gyroid形态学的聚合物/无机纳米杂化物的热解被除去。

引言

有可用于金属nanofoams准备几种方法:去合金1-3,溶胶-凝胶方法4,5,nanosmelting 6,7和燃烧合成8。在脱合金过程中,起始材料通常是二元合金,例如,银和金的合金。越少的贵金属银,在这种情况下,可通过化学或电化学产生了无序多孔金泡沫与纳米韧带除去。在燃烧合成,金属是一个充满活力的前体,它在分解过程中释放出能量和驱动器的金属nanofoam 8形成的混合。研究的金属泡沫材料的机械性能表明,在无序结构的应力不能被有效地从韧带纳米发送到整体宏观9-11,因此良好有序金属nanofoams预期相比,具有优越的机械性能无序的。

这里所表示的想法是使用嵌段共聚物自组装成有序的纳米结构前体对金属nanofoams。取决于嵌段共聚物中,单体单元的总数,并经化学连接块之间的斥力的范围的组成,各种形态出现,例如:球形,圆柱形,薄片状,双gyroid,六角形层状穿孔,而其他12-14 。此外,聚合物嵌段可以选择性地降解,导致纳米多孔材料15。最常用的方法包括:臭氧分解16-18,UV照射19,反应离子蚀刻20-2223-26的溶解。所产生的多孔结构可被回填与各种无机材料。金属氧化物( SiO 2的,TiO 2的)通常是通过溶胶-凝胶法引入到模板的通道27-29。萨尔瓦多ectrochemical和电解电镀,通常用于沉积金属之中或之上的模板30-33。最后,将剩余的聚合物可以从通过热解2,溶解34,35,紫外线劣化28,29 的聚合物/无机纳米杂化物去除

在我们的方法中,我们从聚苯乙烯- 嵌段 -聚(4 -乙烯基吡啶)的超分子复合物(PS-B-P4VP)嵌段共聚物和两亲十五烷基苯酚(PDP)的分子开始。这是复杂的PDP和吡啶环( 图1a)之间的氢键的结果。起始嵌段共聚物的组合物和加入的PDP的量被选择在这样一种方式,所得到的体系自组装在双连续双gyroid形态与PS网络和一个P4VP(PDP)的基体( 图1b)。 PDP分子变成选择性地溶解于乙醇和P4VP链崩溃到PS网络(图1c)。接着,用无电解电镀法,镍被沉积到模板( 图1d)的孔中。 通过热分解除去残留的聚合物后,一个有序gyroid镍nanofoam得到( 图1e)。

研究方案

1,准备和PS-B-P4VP的表征(PDP)配合双Gyroid形态

  1. 称出聚苯乙烯- 嵌段 -聚(4 -乙烯基吡啶)(PS-β-P4VP)和十五烷基苯酚(PDP中,M R =304.51克/摩尔)。为了获得gyroid形态,(根据线性AB二嵌段共聚物的相图P4VP(PDP)的嵌段的重量分数(F P4VP(PDP))应为 0.6),小心地选择PDP的量应。通常,0.15-0.2克共聚物PS-b-P4VP的导致共聚物PS-b-P4VP(PDP)的膜为50〜100μm厚的(假定在步骤1.3中使用的培养皿的直径为5-6厘米)。根据下面的公式计算出的PDP的量:
    figure-protocol-406
    figure-protocol-473
    figure-protocol-539
    figure-protocol-606
  2. 溶解共聚物PS-b-P4VP和PDP的氯仿,搅拌了几个小时,在室温下进行。保持低于2%(重量)的聚合物的浓度,以确保均匀的复合物的形成。
  3. 将溶液倾入玻璃培养皿。
  4. 将菜成饱和氯仿气氛。
  5. 大约一个星期后,取出培养皿。超分子配合物的膜。
  6. 干燥在真空薄膜在30℃下过夜。
  7. 将膜在一个专门设计的容器中,从容器中除去空气,然后用氮气填充。 氮气气氛中以1巴的过压之下退火的薄膜在烘箱中4天120℃。
  8. 切小片的电影,嵌入在环氧树脂和隔夜治愈它在40°C。
  9. 样切片机用金刚石刀在室温下的厚度为约80nm。钍Ë显微切片部分会浮在水面上。接他们,并放置在铜网格。
  10. 将含有该路段显微切片电网与碘罐。 45分钟后样品染色并准备好透射电子显微镜。
  11. 插入的Cu网格与在透射型电子显微镜以120千伏和图像样本的加速电压下工作染色的切片。
  12. 插入件的膜(步骤1.7之后获得)放入样品架用于小角X射线散射和带卡普顿胶带固定。将制备好的样品架插入机器的SAXS。打开X射线快门,并获得二维散射图案。整合所获得的2D模式,并分析在一维模式峰的位置。

2,生成多孔结构与表征

  1. 把一块膜(步骤1.7后获得)的乙醇,并保持了三天。
  2. 干燥样品。
  3. 预削时的样品1 H-NMR测量。溶解PDP粉,PS-B-P4VP粉,超分子复杂的PS-B-P4VP(PDP)(步骤1.7之后),并且多孔膜(步骤2.2以后)在CDCl 3中。在室温下记录1 H-NMR谱。
  4. 分析PS-B-P4VP粉,超分子复杂的PS-B-P4VP(PDP)(步骤1.7之后),和多孔膜(步骤2.2后)用差示扫描量热法。使用的调制模式,用一个加热/冷却速率为1℃/分钟,0.5℃的振幅和60秒的振荡周期。平衡的样品在-30℃下,加热至180℃,冷却至-30℃,然后再加热到180℃。使用从第二加热循环中的数据进行分析。
  5. 除气在多孔样品(步骤2.2之后)为8小时,在室温下和18小时,在70℃,并在77 K进行氮吸附测量
  6. 使用适当的软件(例如,WinADP)和模型来分析所得到的吸附等温线。
  7. 干燥该多孔样品(步骤2.2之后),在50℃下进行8小时,脱气它在2小时室温下的0.5 Pa和压力。
  8. 进行压汞法。

3,插入镍在聚合物模板

  1. 称取氯化锡(氯化亚锡2,M R =189.60克/摩尔),并调制成水溶液(0.1M氯化亚锡2 / 0.1 M盐酸;1.896克氯化亚锡 ,0.8毫升盐酸,和100毫升H 2 O)。把在振荡器上过夜溶液保证的SnCl 2的完全溶解。
  2. 称出氯化钯(中PdCl 2,M R =177.33克/摩尔)和制备水 ​​溶液(0.0014 M中PdCl 2 / 0.25 M盐酸;0.025克中PdCl 2,将2ml的HCl和100毫升H 2 O)。
  3. 准备镍镀液的组成部分1:称取6.78克六水合硫酸镍(硫酸镍4•6H 2 O,M R = 2620.85克/摩尔)和2克柠檬酸钠(Na 3 C 6 H 5 O 7,M R =258.06克/摩尔)和溶解它们在80毫升的水中。加入828微升85%乳酸(C 3 H 6 O 3,M R =90.08克/摩尔)。
  4. 准备镍镀液中的第2部分:重出0.2克硼烷二甲基胺((CH 3)2 NHBH 3,M R =58.92克/摩尔),溶于20毫升水中。硼烷二甲胺复杂的,应在通风良好的通风橱内进行处理。
  5. 在氯化锡(步骤3.1)中1小时的水溶液浸渍多孔膜(步骤2.2之后)。
  6. 用去离子水彻底冲洗胶片。
  7. 中的氯化钯(步骤3.2)中1小时的水溶液浸渍膜。
  8. 用去离子水彻底冲洗胶片。
  9. 混合第1部分(3.3)和镍镀液的组成部分2(3.4)。用氢氧化铵调节pH至7.0。
  10. 在镍电镀浴中1小时,将其浸入膜。
  11. 用去离子水彻底冲洗胶片。
  12. 干燥样品。
  13. 制备的镀覆样品用于电子显微镜如在步骤1.8-1.9中描述。
  14. 图像如在步骤1.11中描述的样品。
  15. 插入包含​​镀样品中的高分辨率透射电子显微镜的截面铜网格。获取高分辨率的TEM照片。观察样本在显微镜下,选择通过EDX(X射线能量色散分析)元素分析的区域。执行所选择的区域的EDX分析,并分析所获得的图案。

4,曝光的逆Gyroid泡沫镍

  1. 把镀镍膜(步骤3.12后)在烘箱中于350℃,并保持1小时至4天。
  2. 使用银糊样品附着到样品架。
  3. 将样品放入扫描电子麦克风roscope。采集样品的多个图像。
  4. 将样品放入扫描电子显微镜。观察样品,在显微镜下,选择用于通过EDX元素分析的区域。执行所选择的区域的EDX分析,并分析所获得的图案。

结果

。超分子复合物的形态共聚物PS-b-P4VP(PDP)x由TEM和SAXS 图2a检查和2b显示的代表超分子配合物的典型gyroid模式:双波和已知代表货车轮图案通过(211)突起和(111)面的gyroid单元电池分别。 PS块域显得明亮而P4VP(PDP)×块域出现暗由于碘染色。 图2c代表了不同的gyroid样品,其中的周期性下降时用2。SAXS峰的一个因素的双波模式位置:√6Q *√8Q *√14Q *√22q的...

讨论

超分子复合物的前体秩序井然金属nanofoams成功应用。在该方法中,关键的步骤是获得合适的模板, 与gyroid形态的模板。在嵌段共聚物的相图的gyroid区域是非常小的,这是相当困难的目标。这意味着,如果常规的嵌段共聚物被用作起始原料时,相当精细的合成必须被重复,直到所希望的组合物,其引起的gyroid形态,就达到了。在共聚物PS-b-P4VP(PDP)的配合物不同的组合物,并且因此...

披露声明

作者宣称没有竞争的财务权益。

致谢

我们承认财务支持格罗宁根大学的泽尼克研究所的高级材料。

材料

NameCompanyCatalog NumberComments
REAGENTS:
PS-b-P4VP, CAS: 26222-40-2Polymer Source Inc.P9009-S4VP
P136-S4VP
P5462-S4VP
P3912-S4VP
additional information are provided in a separate table
PDPAldrichP4402-100G-Arecrystallized twice from petroleum ether
SnCl2Acros Organics196981000
PdCl2Aldrich76050
NiSO4 x H2OSigma-Aldrich227676
lactic acidAldrichW261106
citric acid trisodium saltSigma-AldrichC3674
borane dimethyl amine complexAldrich180238
PS-b-P4VP catalogue numberMn (PS), g/molMn(P4VP), g/molPDI
P9009-S4VP2400095001.1
P136-S4VP31900132001.08
P5462-S4VP37500160001.3
P3912-S4VP41500175001.07

参考文献

  1. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N., Sieradzki, K. Evolution of nanoporosity in dealloying. Nature. 410, 450-453 (2001).
  2. Nyce, G. W., Hayes, J. R., Hamza, A. V., Satcher, J. H. Synthesis and Characterization of Hierarchical Porous Gold Materials. Chem. Mater. 19, 344-346 (2007).
  3. Detsi, E., van de Schootbrugge, M., Punzhin, S., Onck, P. R., De Hosson, J. T. M. On tuning the morphology of nanoporous gold. Scripta Mater. 64, 319-322 (2011).
  4. Gacoin, T., Lahlil, K., Larregaray, P., Boilot, J. P. Transformation of CdS Colloids: Sols, Gels, and Precipitates. J. Phys. Chem. B. 105, 10228-10235 (2001).
  5. Tappan, B. C., Steiner, S. A., Luther, E. P. Nanoporous Metal Foams. Angew. Chem. Int. Ed. 49, 4544-4565 (2010).
  6. Leventis, N., Chandrasekaran, N., Sadekar, A. G., Sotiriou-Leventis, C., Lu, H. One-Pot Synthesis of Interpenetrating Inorganic/Organic. Networks of CuO/Resorcinol-Formaldehyde Aerogels: Nanostructured Energetic Materials. J. Am. Chem. Soc. 131, 4576-4577 (2009).
  7. Leventis, N., Chandrasekaran, N., Sotiriou-Leventis, C., Mumtaz, A. Smelting in the age of nano: iron aerogels. J. Mater. Chem. 19, 63-65 (2009).
  8. Tappan, B. C., et al. Ultralow-Density Nanostructured Metal Foams: Combustion Synthesis, Morphology, and Composition. J. Am. Chem. Soc. 128, 6589-6594 (2006).
  9. Ashby, M. F., et al. Metal Foams: a Design Guide. Butterworth-Heinemann. , (2000).
  10. Tekoglu, C. Size Effects in Cellular Solids. , (2007).
  11. Amsterdam, E. Structural Performance and Failure Analysis of Aluminium Foams. , (2008).
  12. Bates, F. S., Fredrickson, G. H. Block Copolymer Thermodynamics: Theory and Experiment. Annu. Rev. Phys. Chem. 41, 525-527 (1990).
  13. Hamley, I. W. . The Physics of Block Copolymers. , (1998).
  14. Abetz, V., Simon, P. . Advances in Polymer Science. , (2005).
  15. Hillmyer, M. A. Nanoporous Materials from Block Copolymer Precursors. Adv. Polym. Sci. 190, 137-181 (2005).
  16. Mansky, P., Harrison, C. K., Chaikin, P. M., Register, R. A., Yao, N. Nanolithographic templates from diblock copolymer thin films. Appl. Phys. Lett. 68, 2586-2588 (1996).
  17. Hashimoto, T., Tsutsumi, K., Funaki, Y. Nanoprocessing Based on Bicontinuous Microdomains of Block Copolymers: Nanochannels Coated with Metals. Langmuir. 13, 6869-6872 (1997).
  18. Chen, S. -. Y., Huang, Y., Tsiang, R. C. -. C. Ozonolysis efficiency of PS-b-PI block copolymers for forming nanoporous polystyrene. J. Polym. Sci. A Polym. Chem. 46, 1964-1973 (2008).
  19. Thurn-Albrecht, T., et al. Nanoscopic Templates from Oriented Block Copolymer Films. Adv. Mater. 12, 787-791 (2000).
  20. Park, M., Harrison, C., Chaikin, P. M., Register, R. A., Adamson, D. H. Block Copolymer Lithography: Periodic Arrays of ~1011 Holes in 1 Square Centimeter. Science. 276, 1401-1404 (1997).
  21. Cheng, J. Y., Ross, C. A., Thomas, E. L., Smith, H. I., Vancso, G. J. Fabrication of nanostructures with long-range order using block copolymer lithography. Appl. Phys. Lett. 81, 3657-3659 (2002).
  22. Voet, V. S. D., et al. Interface Segregating Fluoralkyl-Modified Polymers for High-Fidelity Block Copolymer Nanoimprint Lithography. J. Am. Chem. Soc. 133, 2812-2815 (2011).
  23. Zalusky, A. S., Olayo-Valles, R., Wolf, J. H., Hillmyer, M. A. Ordered Nanoporous Polymers from Polystyrene-Polylactide Block Copolymers. J. Am. Chem. Soc. 124, 12761-12773 (2002).
  24. Crossland, E. J. W., et al. A Bicontinuous Double Gyroid Hybrid Solar Cell. Nano Lett. 9, 2807-2812 (2008).
  25. Uehara, H., et al. Size-Selective Diffusion in Nanoporous but Flexible Membranes for Glucose Sensors. ACS Nano. 3, 924-932 (2009).
  26. Voet, V. S. D., et al. Poly(vinylidene fluoride)/nickel nanocomposites from semicrystalline block copolymer precursors. Nanoscale. 5, 184-192 (2013).
  27. Brinker, C. J., Scherer, J. W. . Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. , (1990).
  28. Hsueh, H. -. Y., et al. Inorganic Gyroid with Exceptionally Low Refractive Index from Block Copolymer Templating. Nano Lett. 10, 4994-5000 (2010).
  29. Hsueh, H. -. Y., Ho, R. -. M. Bicontinuous Ceramics with High Surface Area from Block Copolymer Templates. Langmuir. 28, 8518-8529 (2012).
  30. Riedel, W. . Electroless Nickel Plating. , (1991).
  31. Mallory, G. O., Hajdu, J. B. Electroless Plating: Fundamentals and Applications. American Electroplaters and Surface Finishers Society. , (1992).
  32. Djokić, S. S. . Modern Aspects of Electrochemistry. , (2002).
  33. Djokić, S. S., Cavallotti, P. L. . Modern Aspects of Electrochemistry. , (2010).
  34. Crossland, E. J. W., Ludwigs, S., Hillmyer, M. A., Steiner, U. Control of gyroid forming block copolymer templates: effects of an electric field and surface topography. Soft Matter. 6, 670-676 (2010).
  35. Hsueh, H. Y., et al. Nanoporous Gyroid Nickel from Block Copolymer Templates via Electroless Plating. Adv. Mater. 23, 3041-3046 (2011).
  36. Vukovic, I., et al. Supramolecular Route to Well-Ordered Metal Nanofoams. ACS Nano. 5, 6339-6348 (2011).
  37. Mao, H., Hillmyer, M. A. Macroscopic samples of polystyrene with ordered three-dimensional nanochannels. Soft Matter. 2, 57-59 (2006).
  38. Kobayashi, Y., Tadaki, Y., Nagao, D., Konno, M. Deposition of Gold Nanoparticles on Polystyrene Spheres by Electroless Metal Plating Technique. J. Phys. Conf. Ser. 61, 582-586 (2007).
  39. Finnefrock, A. C., Ulrich, R., Toombes, G. E., Gruner, S. M., Wiesner, U. The plumber's nightmare: a new morphology in block copolymer-ceramic nanocomposites and mesoporous aluminosilicates. J. Am. Chem. Soc. 125, 13084-13093 (2003).
  40. Tyler, C. A., Morse, D. C. Orthorhombic Fddd network in triblock and diblock copolymer melts. Phys. Rev. Lett. 94, 208-302 (2005).
  41. Ranjan, A., Morse, D. C. Landau theory of the orthorhombic Fddd phase. Phys. Rev. E. 74, 011803 (2006).
  42. Kim, M. I., et al. Stability of the Fddd Phase in Diblock Copolymer Melts. Macromolecules. 41, 7667-7670 (2008).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

86 gyroid nanofoams

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。