サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

この記事では、自己組織化ジブロック共重合体ベースの超分子から得たナノポーラステンプレート上に無電解金属堆積経由秩序ニッケルナノフォームの製造が記載されている。

要約

熱伝導性および導電性を、それらが触媒的に活性であり、しかも、高い気孔率、高い表面対体積及び強度対重量比を有する - ナノ多孔質金属発泡体は、特性の独特の組み合わせを有する。残念ながら、金属ナノ構造体の調製のための一般的なアプローチは、それらの機械的特性に悪影響を与える可能性のある、非常に不規則なアーキテクチャを有する材料をレンダリングする。ブロックコポリマーは、順序付けられたナノ構造体に自己組織化する能力を有し、秩序金属ナノフォームの製造のためのテンプレートとして適用することができる。ここでは、ブロックコポリマーベースの超分子複合体の応用を説明-ポリスチレン- ブロック -ポリ(4 -ビニルピリジン)(ペンタデシルフェノール)PS-β-P4VP(PDP) -秩序ニッケルナノ発泡体のための前駆体として。超分子複合体は、従来のブロック共重合体と同様相挙動を示し、二連続ジャイロイド形態学のウィットに自己組織化することができますP4VP(PDP)がマトリクス状に配置されたH 2のPSネットワーク。 PDPは、金属で埋め戻しすることができる多孔質構造の形成をもたらすエタノールに溶解することができる。無電解めっき技術を用いて、ニッケル、テンプレートのチャンネルに挿入することができる。最後に、残りのポリマーは、逆ジャイロイド形態を有するナノ多孔性ニッケル発泡体で得られたポリマー/無機ナノハイブリッドの熱分解を介して除去することができる。

概要

6,7 nanosmelting、1-3脱合金、ゾル-ゲルは、4,5近づき 、燃焼合成8:そこ金属ナノフォームの製造のための利用可能ないくつかの技術がある。脱合金プロセスにおいて、出発材料は、通常、例えば、二元合金、銀と金の合金である。少ない貴金属、この場合、銀は、ナノサイズを有する不規則靭帯金多孔質発泡体をもたらす化学的または電気化学的に除去することができる。燃焼合成法では、金属は、その分解中にエネルギーを放出し、金属ナノ発泡体8の形成を駆動するエネルギーの前駆体と混合される。金属発泡体の機械的挙動に関する研究が無秩序のアーキテクチャで応力が全体的なマクロスケール9-11に靱帯ナノスケールから効果的に伝達することができないことを示すしたがって秩序金属ナノフォームのと比較して、優れた機械的特性を有することが期待される無秩序なもの。

ここに示される考え方は、金属ナノフォーム前駆体として順序付けられたナノ構造体に自己組織化ブロックコポリマーを使用することである。球状、円筒状、層状、ダブルジャイロイド、六角形穿孔ラメラなど12-14:ブロック共重合体の組成は、モノマー単位の総数および化学的に接続されたブロック間の反発の程度に応じて、様々な形態は以下のような表示され。また、重合体ブロックは、ナノ多孔質材料15につながる選択的に分解することができる。最も一般的な方法としては、オゾン分解16-18、UV照射19、反応性イオンエッチング20-22、および23-26を溶解。生成された多孔質構造は、様々な無機材料で埋め戻すことができる。金属酸化物( 例えば SiO 2やTiO 2の 、通常、テンプレートのチャンネル27-29にゾル-ゲル法を介して導入される。エルectrochemical及び無電解めっきは、一般に30-33またはテンプレート上に金属を堆積するために使用される。最後に、残りの重合体の熱分解2、溶解34,35、UV劣化28,29 を介して 、ポリマー/無機ナノハイブリッドから除去することができる

我々のアプローチでは、ポリスチレン- ブロック -ポリ(4 -ビニルピリジン)(PS-β-P4VP)ジブロックコポリマーおよび両親媒性ペンタデシルフェノール(PDP)分子の超分子複合体から開始する。この複合体は、PDP及びピリジン環(図1a)との間の水素結合の結果である。開始ブロック共重合体の組成と添加量は、PDPのように選択されるPSネットワークとP4VP(PDP)マトリックスとの両連続二重ジャイロイド形態で得られた系自己集合( 図1b)。 PDPの分子は、(選択的にPSネットワーク上にエタノールとP4VPチェーンの崩壊に溶解なる図1c)。続いて、無電解メッキ法を用いて、ニッケルのテンプレート( 図1d)の細孔内に堆積される。熱分解を介して、残りのポリマーを除去した後、秩序ジャイロイドニッケルナノ発泡体( 図1eに )が得られる。

プロトコル

ダブルジャイロイド形態を有する1。PS-B-P4VPの作製とキャラクタリゼーション(PDP)錯体

  1. 秤量ポリスチレン- ブロック -ポリ(4 -ビニルピリジン)(PS-β-P4VP)及びペンタデシルフェノール(PDP、M rは = 304.51グラム/モル)。ジャイロイド形態を得るためには、慎重であるべきであるPDPの量を選択(PDP(P4VPの重量分率)()P4VP(PDP)は、fブロックは、約あるべきである。0.6線形ABジブロックコポリマーの相図によれば)。通常、PS-B-P4VPの0.15〜0.2グラムは、PS-B-P4VP(PDP)につながるフィルム(ステップ1.3で使用されたペトリ皿の直径は5〜6センチと仮定)50〜100ミクロンの厚さである。以下の式に従ってPDPの量を計算する。
    figure-protocol-485
    figure-protocol-552
    figure-protocol-617
    figure-protocol-682
  2. クロロホルムに、PS-B-P4VPとPDPを溶解し、室温で数時間のためにそれをかき混ぜる。均質な複合体形成を確実にするために2重量%未満のポリマーの濃度を維持する。
  3. ガラスシャーレに溶液を注ぐ。
  4. 飽和クロロホルム大気中にお皿を置きます。
  5. 約1週間後、ペトリ皿を取り出します。超分子複合体の膜を形成する。
  6. 30°Cで一晩真空中で膜を乾燥させる。
  7. 特別に設計された容器にフィルムを置き、コンテナから空気を除去した後、窒素でそれを埋める。 1バールの過圧で、N 2雰囲気下、120℃のオーブン中で4日間、膜をアニール。
  8. エポキシに埋め込むフィルムの小片を、カットし、40℃で一晩、それを治す
  9. 室温でダイヤモンドナイフを使用して約80nmの厚さにサンプルをミクロトーム。目Eミクロトームセクションでは、水に浮くでしょう。それらをピックアップし、銅グリッド上に配置します。
  10. ヨウ素と瓶にミクロトームセクションを含むグリッドを置く。 45分後に試料を染色し、透過型電子顕微鏡の準備ができている。
  11. 120 kVの、画像サンプルの加速電圧で動作する透過型電子顕微鏡での染色切片のCuグリッドを挿入します。
  12. 小角X線散乱用のサンプルホルダーに(ステップ1.7の後に得られる)フィルム片を挿入し、カプトンテープで固定します。 SAXS用のマシンに調製された試料ホルダーを配置します。 X線シャッターを開いて、2次元散乱パターンを獲得する。取得した2次元パターンを統合し、1次元パターンのピークの位置を分析する。

多孔質構造の2。生成とキャラクタリゼーション

  1. エタノール(ステップ1.7の後に得られる)フィルム片を入れて3日間、保管してください。
  2. サンプルを乾燥させます。
  3. 1 H NMR測定のためのサンプルを削減する。 PDP用粉末、PS-B-P4VP粉末、CDCl 3中(ステップ2.2の後)超分子複合体のPS-B-P4VP(PDP)(ステップ1.7の後)、および多孔質膜を溶解する。室温でレコード1 H NMRスペクトルを示す。
  4. PS-B-P4VP粉末を分析し、超分子複合体のPS-B-P4VP(PDP)(ステップ1.7の後)、および示差走査熱量測定による多孔質フィルム(ステップ2.2の後)。 1℃/分の加熱/冷却速度、0.5℃の振動振幅、および60秒の振動周期で変調モードを使用します。 -30℃でサンプルを平衡化、熱180℃、-30℃まで冷却し、その後、180℃に再び加熱しC.分析のための第二の加熱サイクルからのデータを使用しています。
  5. 70°Cで、室温で8時間及び18時間(ステップ2.2の後に)多孔質試料をガス放出し、77Kでの窒素吸着測定を実行する
  6. 適切なソフトウェア(例えば、WinADを使用P)および得られた等温線を解析するためのモデル。
  7. 8時間50℃で(ステップ2.2の後に)多孔質試料を乾燥し、室温で2時間、0.5 Paの圧力でそれを脱気。
  8. 水銀圧入を行う。

ポリマーテンプレート中3。挿入ニッケル

  1. 塩化スズ(のSnCl 2、= 189.60グラム/モルのM r)を秤量し、水溶液を調製する(0.1 MのSnCl 2 / 0.1 M HClを、1.896グラムのSnCl 2、0.8 mlのHClを、100mlのH 2 O)。のSnCl 2の完全な溶解を確実にするためにシェーカーを一晩で解決策を置く。
  2. 塩化パラジウム(PdCl 2を 、M rは = 177.33グラム/モル)を秤量し、水溶液を調製し(0.0014 MのPdCl 2 / 0.25 MのHCl、0.025グラムのPdCl 2を2mlのHClと100mlのH 2 O)。
  3. ニッケルめっき浴の一部1を準備します。6.78グラムを量る硫酸ニッケル六水和物(のNiSO 4•6H 2 O、M、R = 2620.85グラム/モル)及び2gのクエン酸ナトリウムせ(Na 3 C 6 H 5 O 7、M rは = 258.06グラム/モル)と水80mlにそれらを溶解する。 828μlの85%乳酸(C 3 H 6 O 3、M rは = 90.08グラム/モル)を添加する。
  4. ニッケルめっき浴の一部2を調製アウト:重量0.2グラムのジメチルアミンボラン錯体((CH 3)2 NHBH 3、M rは = 58.92グラム/モル)と水20mlに溶かし。ボランジメチルアミン錯体は、換気のよいドラフト内で処理する必要があります。
  5. 1時間塩化錫(ステップ3.1)の水溶液中で(ステップ2.2の後)多孔質膜を浸す。
  6. 脱イオン水で十分にフィルムを洗浄します。
  7. 1時間塩化パラジウム(工程3.2)の水溶液にフィルムを浸す。
  8. 脱イオン水で十分にフィルムを洗浄します。
  9. ニッケルめっき浴のパート1(3.3)とパート2(3.4)を混ぜる。水酸化アンモニウムを用いてpHを7.0に調整。
  10. 1時間ニッケルめっき浴中に膜を浸す。
  11. 脱イオン水で十分にフィルムを洗浄します。
  12. サンプルを乾燥させます。
  13. ステップ1.8から1.9で説明したように、電子顕微鏡のためにプレーティングサンプルを準備します。
  14. 画像ステップ1.11で説明したように、サンプル。
  15. 高分解能透過型電子顕微鏡における試料のめっき部分を含むCuグリッドを挿入する。高解像度のTEM顕微鏡写真を取得。顕微鏡下でサンプルを観察し、EDX(X線のエネルギー分散分析)による元素分析のための領域を選択します。選択した領域のEDX分析を行い、得られたパターンを分析します。

逆ジャイロイドニッケル泡の4。露出

  1. 350℃のオーブンで(ステップ3.12の後)にニッケルめっき膜を入れて、4日に1時間のアップからそれを維持。
  2. 銀ペーストを用いてサンプルホルダーにサンプルを添付します。
  3. 走査電子マイクにサンプルを挿入するroscope。サンプルのいくつかの画像を取得する。
  4. 走査型電子顕微鏡内に試料を挿入します。顕微鏡下でサンプルを観察し、EDXによる元素分析のための領域を選択します。選択した領域のEDX分析を行い、得られたパターンを分析します。

結果

代表超分子複合体の超分子複合体のPS-B-P4VP(PDP)は、xをTEMおよびSAXSによって検査されるの形態図2Aおよび図2Bディスプレイの典型的なジャイロイドパターン:ダブル波と表現することが知られているワゴンホイールパターンそれぞれ(211)を介して凸とジャイロイド単位セルの(111)面、。 P4VP(PDP)xブロックドメインによるヨウ素染色に暗く見えるながらPS?...

ディスカッション

超分子複合体が正常に秩序金属ナノフォームのための前駆体として適用される。この方法では、重要なステップは、ジャイロイド形態を持つテンプレートすなわち 、適切なテンプレートを取得することである。ブロックコポリマーの相図において、ジャイロイド領域は非常に小さく、それが標的とするのがかなり困難である。これは、従来のブロックコポリマーを出発材料として使用...

開示事項

著者らは、競合する経済的利益を宣言していません。

謝辞

私たちは、先端材料のためのゼルニケ研究所、フローニンゲン大学の財政支援を認める。

資料

NameCompanyCatalog NumberComments
REAGENTS:
PS-b-P4VP, CAS: 26222-40-2Polymer Source Inc.P9009-S4VP
P136-S4VP
P5462-S4VP
P3912-S4VP
additional information are provided in a separate table
PDPAldrichP4402-100G-Arecrystallized twice from petroleum ether
SnCl2Acros Organics196981000
PdCl2Aldrich76050
NiSO4 x H2OSigma-Aldrich227676
lactic acidAldrichW261106
citric acid trisodium saltSigma-AldrichC3674
borane dimethyl amine complexAldrich180238
PS-b-P4VP catalogue numberMn (PS), g/molMn(P4VP), g/molPDI
P9009-S4VP2400095001.1
P136-S4VP31900132001.08
P5462-S4VP37500160001.3
P3912-S4VP41500175001.07

参考文献

  1. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N., Sieradzki, K. Evolution of nanoporosity in dealloying. Nature. 410, 450-453 (2001).
  2. Nyce, G. W., Hayes, J. R., Hamza, A. V., Satcher, J. H. Synthesis and Characterization of Hierarchical Porous Gold Materials. Chem. Mater. 19, 344-346 (2007).
  3. Detsi, E., van de Schootbrugge, M., Punzhin, S., Onck, P. R., De Hosson, J. T. M. On tuning the morphology of nanoporous gold. Scripta Mater. 64, 319-322 (2011).
  4. Gacoin, T., Lahlil, K., Larregaray, P., Boilot, J. P. Transformation of CdS Colloids: Sols, Gels, and Precipitates. J. Phys. Chem. B. 105, 10228-10235 (2001).
  5. Tappan, B. C., Steiner, S. A., Luther, E. P. Nanoporous Metal Foams. Angew. Chem. Int. Ed. 49, 4544-4565 (2010).
  6. Leventis, N., Chandrasekaran, N., Sadekar, A. G., Sotiriou-Leventis, C., Lu, H. One-Pot Synthesis of Interpenetrating Inorganic/Organic. Networks of CuO/Resorcinol-Formaldehyde Aerogels: Nanostructured Energetic Materials. J. Am. Chem. Soc. 131, 4576-4577 (2009).
  7. Leventis, N., Chandrasekaran, N., Sotiriou-Leventis, C., Mumtaz, A. Smelting in the age of nano: iron aerogels. J. Mater. Chem. 19, 63-65 (2009).
  8. Tappan, B. C., et al. Ultralow-Density Nanostructured Metal Foams: Combustion Synthesis, Morphology, and Composition. J. Am. Chem. Soc. 128, 6589-6594 (2006).
  9. Ashby, M. F., et al. Metal Foams: a Design Guide. Butterworth-Heinemann. , (2000).
  10. Tekoglu, C. Size Effects in Cellular Solids. , (2007).
  11. Amsterdam, E. Structural Performance and Failure Analysis of Aluminium Foams. , (2008).
  12. Bates, F. S., Fredrickson, G. H. Block Copolymer Thermodynamics: Theory and Experiment. Annu. Rev. Phys. Chem. 41, 525-527 (1990).
  13. Hamley, I. W. . The Physics of Block Copolymers. , (1998).
  14. Abetz, V., Simon, P. . Advances in Polymer Science. , (2005).
  15. Hillmyer, M. A. Nanoporous Materials from Block Copolymer Precursors. Adv. Polym. Sci. 190, 137-181 (2005).
  16. Mansky, P., Harrison, C. K., Chaikin, P. M., Register, R. A., Yao, N. Nanolithographic templates from diblock copolymer thin films. Appl. Phys. Lett. 68, 2586-2588 (1996).
  17. Hashimoto, T., Tsutsumi, K., Funaki, Y. Nanoprocessing Based on Bicontinuous Microdomains of Block Copolymers: Nanochannels Coated with Metals. Langmuir. 13, 6869-6872 (1997).
  18. Chen, S. -. Y., Huang, Y., Tsiang, R. C. -. C. Ozonolysis efficiency of PS-b-PI block copolymers for forming nanoporous polystyrene. J. Polym. Sci. A Polym. Chem. 46, 1964-1973 (2008).
  19. Thurn-Albrecht, T., et al. Nanoscopic Templates from Oriented Block Copolymer Films. Adv. Mater. 12, 787-791 (2000).
  20. Park, M., Harrison, C., Chaikin, P. M., Register, R. A., Adamson, D. H. Block Copolymer Lithography: Periodic Arrays of ~1011 Holes in 1 Square Centimeter. Science. 276, 1401-1404 (1997).
  21. Cheng, J. Y., Ross, C. A., Thomas, E. L., Smith, H. I., Vancso, G. J. Fabrication of nanostructures with long-range order using block copolymer lithography. Appl. Phys. Lett. 81, 3657-3659 (2002).
  22. Voet, V. S. D., et al. Interface Segregating Fluoralkyl-Modified Polymers for High-Fidelity Block Copolymer Nanoimprint Lithography. J. Am. Chem. Soc. 133, 2812-2815 (2011).
  23. Zalusky, A. S., Olayo-Valles, R., Wolf, J. H., Hillmyer, M. A. Ordered Nanoporous Polymers from Polystyrene-Polylactide Block Copolymers. J. Am. Chem. Soc. 124, 12761-12773 (2002).
  24. Crossland, E. J. W., et al. A Bicontinuous Double Gyroid Hybrid Solar Cell. Nano Lett. 9, 2807-2812 (2008).
  25. Uehara, H., et al. Size-Selective Diffusion in Nanoporous but Flexible Membranes for Glucose Sensors. ACS Nano. 3, 924-932 (2009).
  26. Voet, V. S. D., et al. Poly(vinylidene fluoride)/nickel nanocomposites from semicrystalline block copolymer precursors. Nanoscale. 5, 184-192 (2013).
  27. Brinker, C. J., Scherer, J. W. . Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. , (1990).
  28. Hsueh, H. -. Y., et al. Inorganic Gyroid with Exceptionally Low Refractive Index from Block Copolymer Templating. Nano Lett. 10, 4994-5000 (2010).
  29. Hsueh, H. -. Y., Ho, R. -. M. Bicontinuous Ceramics with High Surface Area from Block Copolymer Templates. Langmuir. 28, 8518-8529 (2012).
  30. Riedel, W. . Electroless Nickel Plating. , (1991).
  31. Mallory, G. O., Hajdu, J. B. Electroless Plating: Fundamentals and Applications. American Electroplaters and Surface Finishers Society. , (1992).
  32. Djokić, S. S. . Modern Aspects of Electrochemistry. , (2002).
  33. Djokić, S. S., Cavallotti, P. L. . Modern Aspects of Electrochemistry. , (2010).
  34. Crossland, E. J. W., Ludwigs, S., Hillmyer, M. A., Steiner, U. Control of gyroid forming block copolymer templates: effects of an electric field and surface topography. Soft Matter. 6, 670-676 (2010).
  35. Hsueh, H. Y., et al. Nanoporous Gyroid Nickel from Block Copolymer Templates via Electroless Plating. Adv. Mater. 23, 3041-3046 (2011).
  36. Vukovic, I., et al. Supramolecular Route to Well-Ordered Metal Nanofoams. ACS Nano. 5, 6339-6348 (2011).
  37. Mao, H., Hillmyer, M. A. Macroscopic samples of polystyrene with ordered three-dimensional nanochannels. Soft Matter. 2, 57-59 (2006).
  38. Kobayashi, Y., Tadaki, Y., Nagao, D., Konno, M. Deposition of Gold Nanoparticles on Polystyrene Spheres by Electroless Metal Plating Technique. J. Phys. Conf. Ser. 61, 582-586 (2007).
  39. Finnefrock, A. C., Ulrich, R., Toombes, G. E., Gruner, S. M., Wiesner, U. The plumber's nightmare: a new morphology in block copolymer-ceramic nanocomposites and mesoporous aluminosilicates. J. Am. Chem. Soc. 125, 13084-13093 (2003).
  40. Tyler, C. A., Morse, D. C. Orthorhombic Fddd network in triblock and diblock copolymer melts. Phys. Rev. Lett. 94, 208-302 (2005).
  41. Ranjan, A., Morse, D. C. Landau theory of the orthorhombic Fddd phase. Phys. Rev. E. 74, 011803 (2006).
  42. Kim, M. I., et al. Stability of the Fddd Phase in Diblock Copolymer Melts. Macromolecules. 41, 7667-7670 (2008).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

86

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved