JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Comparison of mitochondrial membrane potential between samples yields valuable information about cellular status. Detailed steps for isolating mitochondria and assessing response to inhibitors and uncouplers using fluorescence are described. The method and utility of this protocol are illustrated by use of a cell culture and animal model of cellular stress.

摘要

Comparison between two or more distinct groups, such as healthy vs. disease, is necessary to determine cellular status. Mitochondria are at the nexus of cell heath due to their role in both cell metabolism and energy production as well as control of apoptosis. Therefore, direct evaluation of isolated mitochondria and mitochondrial perturbation offers the ability to determine if organelle-specific (dys)function is occurring. The methods described in this protocol include isolation of intact, functional mitochondria from HEK cultured cells and mouse liver and spinal cord, but can be easily adapted for use with other cultured cells or animal tissues. Mitochondrial function assessed by TMRE and the use of common mitochondrial uncouplers and inhibitors in conjunction with a fluorescent plate reader allow this protocol not only to be versatile and accessible to most research laboratories, but also offers high throughput.

引言

活细胞中的脂肪和碳水化合物的形式银行代谢能量,并使用该能量为生物合成,膜运输和移动。在胞质溶胶中通过饮食糖酵解在转换直接转化为ATP,获得一定的能量。然而,ATP产生的在细胞中的主要来源是在线粒体内通过线粒体呼吸链1利用。线粒体的体系结构提供了必要的空间取向为有效和高效的ATP的产生。线粒体具有一个双层膜由间空间,并与基体中,最里面的线粒体隔室,房屋一起的组分分离,并协调参与ATP生成的化学反应。内膜包含一系列膜结合蛋白复合物组成的呼吸链,以及ATP合酶中,蛋白质复合物带来的ADP和Pi一起用于形成ATP的。客栈ER膜被折叠成嵴和电子沿着经由细胞色素c,其中复合物之间移动间空间内的可溶电子载体呼吸链复合物通过。作为电子移动,还原当​​量发生氧化和氢离子从基质向间空间泵送。作为高离子浓度的间空间内的结果,电化学梯度建立导致跨线粒体内膜(Δψ)2的膜电位。氧气是电子传递链的最终电子受体,和氢离子从间空间流过的ATP合酶回矩阵,并在这样做的直接导致ATP的形成。这个过程的全部描述被称为氧化磷酸化。嵴的褶皱增加内层膜的表面积,从而允许内最大电子传输和ATP生产每个线粒体。的蛋白质,酶和参与氧化磷酸化的其它分子衍生自两个核和线粒体基因。线粒体含有自己的环状DNA,编码13种蛋白质,以及tRNA和必要的ATP生产3的mRNA。然而,许多更多的蛋白质是必需的,因此是核编码。大部分这些核编码蛋 ​​白质定位到线粒体基质通过在所述前体蛋白的N-末端前序列使用的,它们的进口是由Δψ4,5-驱动部分。

超出促进细胞的生物能学,线粒体也影响主要的代谢过程,例如三氯乙酸和β-氧化,通过调节钙的蜂窝信令,以及在细胞凋亡6的关键作用。具体地说,在细胞应激时,驻留在或BCL-2家族蛋白在线粒体外膜相互作用可引起线粒体外膜渗透性(MOMP)7,8。期间的MOMP,细胞色素C和其他蛋白质被释放到细胞溶胶,并连同几个胞质蛋白形成复合物称为凋亡体9,10。的凋亡体激活胱天蛋白酶是继续在细胞凋亡的执行阶段裂解细胞蛋白质和DNA。一旦发生MOMP,ΔΨ被折叠和ATP的生产暂停。因此,如凋亡启动线粒体功能受到损害,并变化ΔΨ可以关联到线粒体和细胞的健康12。而凋亡是许多疾病模型,线粒体功能和改变ΔΨ端点也可以产生有关的疾病产生和/或进展的有价值的信息。例如,线粒体的结构和功能的变化已经神经变性疾病13,14的过程中记录。

在协议中,异的第一部分完整的线粒体是保留其ΔΨ的LATION描述。 HEK-293T细胞暴露于不同浓度的重组TNF-α,IL1-β和IFN-γ的组合来诱导细胞凋亡。选择这些细胞因子,因为它们经常报道为高的原代人败血性样品15和凋亡的外源性途径中可以通过TNF-α与其受体的结合6的相互作用触发。因为有必要以比培养细胞从主组织隔离官能线粒体微妙的变化,并且由于大量的研究利用动物,该协议还描述了如何从肝脏和前侧索硬化症(ALS)的小鼠模型的脊髓分离线粒体。

该协议的第二部分被开发利用的电位敏感的荧光染料用荧光板读数器监测扰动对线粒体膜电位。差异蜂窝状态( ,健康与不健康的)之间s的通过定量与解偶联剂,呼吸链抑制剂,复杂抑制剂和离子载体,所有这些都导致线粒体膜电位的耗散一起分离线粒体的ΔΨ的强度来区分。的线粒体健康,较大处理后在ΔΨ的变化与线粒体抑制剂,因此线粒体的反应可以用作线粒体(DYS)功能的一个指标。

采用分离线粒体,而不是在原地功能评估提供了确切的证据表明,病理或治疗直接调制改变细胞器16-18。虽然有在文献中以分离从培养的细胞中线粒体的方法,它们是模糊的17和/或利用专门的设备16。该协议详细描述了隔离的方法,是易于适应其它细胞系,包括初级和组织培养13,14,19,20。许多分离的线粒体的研究利用在这个协议,但与克拉克电极中使用的相同的线粒体解偶联剂和抑制剂( 图21是多篇论文在文献中有代表性的例子),而这又是一个非常具体的和专门的设备。此外,这种传统的方法具有如低产量和高复杂22,23限制,并且需要大量的线粒体的(〜500微克/反应)。在这个协议中,该荧光膜感应电位探针TMRE结合使用用荧光板读数器,这是一个标准的机器在许多实验室。 TMRE被广泛认为是因为它快速进入细胞并分离线粒体,可以在低浓度24中。多个反应可以迅速地设置在串联和使用此协议批分析。此外,反应s需要一个更少量孤立的线粒体(〜10微克/反应)。通过要求较少的材料,更小的组织或细胞培养物的样品可以用作一个起点线粒体隔离,更多的重复或反应可以建立起来,并有可能足够的材料为其它分离线粒体实验如ATP产生,耗氧量,或导入分析是可能的。

研究方案

所有的动物实验符合卫生指引国家机构,并批准了维克森林大学的动物护理和使用委员会。对种鸽的SOD1G93A [B6SJL-TGN(SOD1-G93A)1Gur]小鼠模型是从杰克逊实验室(巴尔港,ME)获得。非转基因的野生型(WT)的女性和男性的SOD1G93A [B6SJL-TGN(SOD1-G93A)1Gur]饲养生成SOD1G93A小鼠,并在实验中使用的非转基因野生型同窝小鼠。

1.模型研究

  1. 细胞培养
    1. 在5%CO 2维持人胚肾细胞(HEK-T293)细胞在DMEM补充有10%热灭活的胎牛血清,1%青霉素-链霉素和1%L-谷氨酰胺,在37℃下。
    2. 细胞生长在T75烧瓶,并让他们达到90%汇合。
    3. 进行通过胰蛋白酶消化(0.25%胰蛋白酶-EDTA)3-5分钟细胞分裂,在37℃在5%CO 2 ,胰蛋白酶与5分钟,于700×g离心在4℃下等体积细胞培养基,和离心的细胞失活。
    4. 吸出介质,重悬在培养基中的细胞沉淀。
    5. 种子细胞在适当的烧瓶或板7×10 4个细胞到T75烧瓶,以细胞因子治疗之前48小时。这应该给〜70%,密度在治疗时间。
    6. 24小时后通过吸移的媒体,并与无血清培养基的相同体积(DMEM,无菌)替换它血清饥饿的细胞。
    7. 制备TNF-α,IL1-β,和IFN-γ,从冻干粉末用超纯水以5微克/微升,10毫微克/微升的工作浓度,和10毫微克/微升,分别和它们添加到孔/瓶。
    8. 治疗血清通过直接对适当的烧瓶中的细胞培养基中加入可溶的细胞因子饥饿细胞。治疗包括个体细胞因子,所有3鸡尾酒(简称为"* 3"),或STERILE水作为对照(被称为"0")。
    9. 评估和收获前培养处理的细胞24,48或72小时。
  2. 细胞活力评估
    1. 使5毫克/毫升的溶液的3-(4,5-二甲基吡啶-2-基)-2,5-二苯基溴化(MTT)在1×PBS中。
    2. 对于12孔板,加入100微升的MTT溶液,以每孔,轻轻摇动,以确保均匀分布。
    3. 在5%CO 2孵育板15分钟,1小时,在37℃,并在显微镜对紫色着色的存在下进行检查。如果没有紫色的存在,再次漩涡,让细胞在5分钟的间隔孵化,直到紫色观察。的必要时间量应当由每个研究者决定。
    4. 使用重复移液器,加入700微升的MTT溶剂(4mM的HCl和0.1%NP40中异丙醇)的每个孔中,摇动板(S),在室温下搅拌5-10分钟,或直到所有紫色已离开细胞。如果紫颜色不出来的细胞,增加一个额外的200微升溶剂,继续漩涡。
    5. 进行分析,以从每个100微升井,并放置到96孔板中并读取酶标仪使用570纳米和630纳米的参考波长,但595nm处也是可以接受的,只要读数采取一致的设置。
  3. ALS的动物模型
    1. 所有的动物实验符合卫生指引国家机构,并批准了维克森林大学的动物护理和使用委员会。对种鸽的SOD1G93A [B6SJL-TGN(SOD1-G93A)1Gur]小鼠模型是从杰克逊实验室(巴尔港,ME)获得。非转基因的野生型(WT)的女性和男性的SOD1G93A [B6SJL-TGN(SOD1-G93A)1Gur]饲养生成SOD1G93A小鼠,并在实验中使用的非转基因野生型同窝小鼠。
    2. 与对SOD1突变25标准引物进行基因分型。

2.隔离线粒体

注:重要的是要迅速开展工作,并保留一切冰上整个过程中是非常重要的。

  1. 线粒体隔离缓冲器(MIB),脊髓隔离缓冲液(SC,MIB)和实验缓冲液制剂(EB)的
    1. 提前时间MIB和EB准备以下的股票解决方案。
    2. 使的1M Tris / MOPS通过在70毫升的H 2 O中溶解12.1克Tris碱的加入干MOPS得到pH值至7.4。音量调节至100毫升决赛。过滤消毒,并储存于4℃。
    3. 使1M的Kphos通过混合80.2毫升K 2 HPO 4和19.8毫升KH 2 PO 4的。室温保存。
    4. 使0.2M的EGTA /的Tris加入3.8克EGTA至10中的H 2 O毫升添加的1M Tris / MOPS直到溶解,30-40〜毫升。调整到50毫升,无菌过滤并储存在室温下。需要注意的是pH值将是〜6.7。
    5. 使1M的谷氨酸通过加入10ml1M溶液谷氨酸。过滤消毒和储存4℃。
    6. 使1M的苹果酸通过加入10ml苹果酸的1​​M溶液。添加的Tris / MOPS至50毫米。过滤消毒,并储存于4℃。
    7. 使MIB的在200毫蔗糖,10毫摩尔Tris / MOPS,pH值7.4,和1mM EGTA /的Tris的浓度。过滤消毒,并储存于4℃。
    8. 使SC的MIB在250毫蔗糖,20mM的HEPES-KOH pH为7.5,10mM的氯化钾,1.5mM的氯化镁 ,1mM EDTA中,1毫EGTA,1mM的DTT和蛋白酶抑制剂混合物的浓度。
    9. 使电子束在125毫米氯化钾的浓度,10毫摩尔Tris / MOPS,pH为7.4,5mM的谷氨酸,2.5mM的苹果酸盐,1mM的磷酸钾,pH 7.4中,和10mM EGTA /的Tris。过滤消毒,并储存于4℃。
  2. 之前收获细胞设备的准备。
    1. 冲洗的小玻璃容器和同质化杵三次,用无菌水,并放置冰上。
    2. 收集必要的物品,如标准钻,细胞涉农供应链个人,将1.5ml,15毫升和50毫升试管和解决方案。
  3. 线粒体隔离
    1. 培养细胞
      1. 对于每个样品类型中,使用细胞的2 T175烧瓶中。
      2. 确保细胞是〜90%汇合,并在对照实验中,或板使用和处理如在步骤1.2,如上所述。
      3. 置于工作台顶部,抽吸培养基,用每次15毫升1×PBS中洗两次的贴壁细胞。
      4. 吸出缓冲液和刮烧瓶从烧瓶底部去除粘附细胞。
      5. 添加15毫升1×PBS中,以每个烧瓶,漩涡,并转移至个别的15毫升锥形管中并置于冰上。
      6. 一旦刮削操作后,离心管5分钟,于700×g离心,4℃下使用使用吊桶式转子台式离心机。
      7. 吸取上清液,重悬在1ml MIB的每个颗粒。
      8. 同时结合了悬浮液和转移到一个小的玻璃容器内的同质化。
      9. 添加MIB到容器中,直至到达缓冲器的第一行。均质化细胞附连到钻头以中速3道次的杵。确保该容器是在冰上在此步骤中,不以除去液体上面的杵和使用一个稳定的速度连续通行证。
      10. 转移均质溶液到50毫升锥形管中。
      11. 使用18号1半英寸针吸取溶液到3毫升注射器,用27号半英寸针驱逐它放回锥形管在冰上。照顾驱逐靠在管子的内壁上的溶液,作为利用该力对细胞膜的破坏。
      12. 重复注射器的步骤,共5次。
      13. 在使用水平转头台式离心机将溶液转移入15ml锥形管中,并离心5分钟,在600×g离心,4℃。
      14. 小心取出上清液,在三个1.5毫升管分配。
        注:Mitochondria是在该第一,低速旋后的上清,而细胞膜和不间断的细胞沉淀。
      15. 离心管在一个固定角转子以10,000×g离心,4℃5分钟。
      16. 抽吸上清液,并结合所述球粒在100微升的MIB,并立即放置冰上。
        注:线粒体是在这种高速旋转后的沉淀。线粒体通常将保持其膜电势为〜2-3离子分离后冰并作为浓缩储备溶液在MIB中最稳定的。
    2. 从小鼠组织中线粒体隔离
      1. 根据IACUC协议麻醉的小鼠。在5.0%设置一个蒸发器以诱导麻醉。证实该动物是由于缺乏反射脚捏或眨眼反射的麻醉当眼睛接近或轻拍用棉签。保持在麻醉状态下对整个手术过程的小鼠通过保持在1.5%和2.0%的蒸发器。
      2. EXCISE在冰冷的1X PBS肝脏和脊髓从每个动物和地点另行 - / - ,以洗去任何血液。
      3. 对肝脏,将组织转移至称量盘上的冰和剁成细碎片用新鲜刀片1分钟。
      4. 加组织和适当的缓冲液(MIB用于肝脏或SC的MIB用于脊髓)的容器中,直至到达缓冲器的第一行。同质化组织与杵用手五关。确保该容器是在冰上在此步骤中,不以除去液体上面的杵和使用一个稳定的速度连续通行证。
      5. 转移匀浆清洁15ml试管。
      6. 离心管在一个固定角转子,在750×g离心,4℃,10分钟。
      7. 保存上清液进入洁净管,将它们放在冰上。
        注:线粒体是在该第一,低速旋后上清,而细胞膜和不间断的细胞沉淀。
      8. 重新暂停脊髓粒料我ñ500微升SC MIB的。
      9. 再均质各三次,只填充容器的一半与SC MIB这段时间。
      10. 传输新匀浆至新管。
      11. 离心机的在一个固定的角​​度转子以750×g离心,4℃,10分钟。
      12. 结合这些新的上清液,其含有较多的线粒体,从每个样本的第一上清液。
      13. 离心管在一个固定角转子以10,000×g离心,4℃5分钟。
      14. 抽吸上清液和重悬肝粒料在500μl的MIB和在50μl的SC MIB中的脊髓粒料并立即放在冰上。
        注:线粒体是在这种高速旋转后的沉淀。线粒体通常将保持其膜电势为〜2-3离子分离后冰并作为浓缩储备溶液在MIB中最稳定的。
      15. 执行一个蛋白质浓度测定以估计在溶液线粒体的浓度。按照指令S表示使用市售蛋白质测定试剂盒或类似的方法26。典型线粒体的浓度如下:2 T175烧瓶收率〜2毫克/毫升,1小鼠肝脏〜3-5毫克/毫升,以及1小鼠脊髓〜1-3毫克/毫升。
  4. 使用研发大鼠/小鼠细胞色素C的Quantikine ELISA试剂盒(改编自由制造商提供的协议)细胞色素c的测定。
    1. 之前立即设置的反应中,稀线粒体至0.5mg / ml的工作浓度与EB和在1.5ml管中用于反应(通常为30-50微升每管线粒体的)分发稀释线粒体。
    2. 添加任EB或DMSO,在总体积的1%,到稀释的线粒体和孵化在台式反应7-10分钟。这些反应是稳定长达30分钟,在室温下,如果需要较长的时间帧。
    3. 通过离心在一个固定角转子以10,000×g离心,4℃下进行5分钟,并小心粒料线粒体LY分离上清液并将其放置每一个单独1.5毫升管中。
      注:管既可以在-20℃冷冻后用于分析或立即使用。
    4. 通过比较,在沉淀和上清液27细胞色素C的浓度测定细胞色素C的释放。
      1. 通过增溶粒料中有0.5%的Tx-100在1×PBS中的反应的原体积制备样品。
      2. 对于每个样品,准备2个孔上的ELISA板,一个用于现在溶解沉淀,一个用于从通过加入100微升的细胞色素c的共轭反应的上清液(直使用选自瓶)加100微升0.5%的TX- 100在1×PBS中,然后所有的粒料或上清液样品。
      3. 轻轻涡旋盘低设置(2-4级),持续20秒混合,盖,孵育1小时,37℃。
      4. 接着,根据厂家专业洗涤平板4次,洗涤缓冲液稀释呃的说明。通过点击该井的纸巾取出多余的解决方案。
      5. 接着,添加150微升的1:1的A + B显影液向每个孔,孵育该板在室温下20-30分钟,在黑暗中。
      6. 最后,添加50微升的终止溶液至每孔,并采取吸光度读数在540nm处用酶标仪。通过比较,在沉淀与上清液每个反应细胞色素C的量计算细胞色素c释放的量。

线粒体(不典型增生)功能3.评估

  1. 紧接之前的反应都设置,稀释线粒体至0.5mg / ml的工作浓度与EB和放置在1.5ml管中用于反应(通常为30-50微升线粒体每管被使用)。
  2. 线粒体治疗
    1. 添加适当的治疗(EB控制,1μMFCCP与50纳米缬氨霉素混合,10μM鱼藤酮,为5μM寡,2mM的KCN,或200μM的ADP,终浓度),以在1/10分离反应的稀释线粒体的总体积。孵育在台式反应7分钟。
      注:通过皮肤处理这些物质用作误食或吸收时可能是有害的应当小心。
    2. 稀TMRE,重新溶于无菌水中以100微米的工作浓度,并储存在-20℃下,向2μM和添加量等于线粒体反应体积。
    3. 孵育在台式反应7分钟。
    4. 通过离心在一个固定角转子以10,000×g离心,4℃5分钟粒料线粒体。
    5. 每个样品的上清液体积的负荷一半到396孔板和读取荧光。
      注:TMRE的激发和发射波长应根据使用体积和板,其将用于制造商的说明进行优化化验。使用标准的384孔黑色板用25微升1μM的TMRE(最终反应浓度)得到最强的信号用的激发/发射波长  485纳米/ 535纳米。
    6. 计算在对照(EB)和各处理通过分割从板阅读器,用于通过从对照样品的RFU的试验样品获得的相对荧光值(RFU)之间的荧光的折叠的差异。

结果

HEK-293T细胞用200微克/毫升的TNF-α,40纳克/毫升IL1-β,75纳克/毫升的IFN-γ处理(* 3)为24〜48小时,导致渐进量的细胞死亡( 图1A )。用MTT测定法细胞活力进行评估和一致表明,有〜10%的降低细胞生存力,24小时的治疗和〜20%的减少与48小时的治疗。具有相似的浓度(100微克/毫升的TNF-α,40纳克/毫升IL1-β,75纳克/毫升的IFN-γ)在48小时,得到类似的细胞死亡的结果,和治疗与个别的细...

讨论

HEK-293T细胞用重组细胞因子的治疗导致适量的细胞死亡超过48小时( 图1)。诱导的TNF-α处理的细胞死亡的量是类似于以前报道的研究30和多种细胞因子是大于总结性的量与任何细胞因子的共施用后细胞活力降低单独也与文献31,32一致。调整数量和类型的细胞因子治疗,以及鸡尾酒单个细胞因子比较的能力,使学习对肾脏细胞因子暴露的具体影响该细胞培养模型的吸引?...

披露声明

The authors have nothing to disclose.

致谢

This research was supported in part by NSF grant CHE-1229562 (VDGM), the Office of Undergraduate Research at Elon University, the Elon Chemistry Department, and the Elon Lumen Prize (TL and TAD), the Elon College Fellows Program (JAC), and the Elon College Honors Program (TAD).

材料

NameCompanyCatalog NumberComments
L-glutamic acidSigmaG1251Can use the potassium salt instead.
malic acidSigmaM8304Can use the potassium salt instead.
KH2PO4SigmaP0662
K2HPO4SigmaP3786
EGTASigmaE3889
Trisma baseSigmaT6066
MOPSSigmaM3183
CCCPSigmaC2920Dilute down to 100 μM as a working stock in ethanol and store at -20 °C.
ValinomycinSigmaV0627Make in DMSO and use as a 5 μM working stock. Store at -20 °C.
sucroseFisherS5-500
KCNMallinckrodt6379Make a concentrated stock in ethanol and then dilute with water 
rotenoneSigmaR8875Highly toxic. Made in ethanol.
oligomycinSigmaO4876Highly toxic. Made in ethanol.
ADPSigmaA2754
TMRESigma8717-25mgDilute 100 μM stock with EB immediatley before use.
DMEMGibco11965-0841x regular (high glucose).
Pen/StrepInvitrogen15140-155
L-glutamineFisherSH3002101Store aliquots at -20 °C
FBSLonza14-501FUS origin, premium quality. Heat inactivate and store aliquots at -20 °C.
Trypsin-EDTASigmaT4049
DMSOSIgmaD2650
Protien Assay Dye (5x)Bio-Rad500-0006Any protein assay can substitute.
BSAFisherBP1600-100Make 2 mg/ml stock in water for protein assay.
MTT powderSigmaM2128Filter sterlize 5 mg/ml stock made in PBS. Store aliquots at -20 °C; store at 4 °C for up to 1 week.
Tergitol solution (NP-40)SigmaNP40S
Recombinant Human IL-1BGibcoPCH08014Once opened store aliquots at -20 °C
Recombinant Human TNF-alphaGibcoPHC3015L
Recombinant Human IFN-gammaGibcoPHC4031
Dulbeccos PBS (-/-)SigmaD8537Make sure it is without Mg2+ and Ca2+ ions.
Cytochrom c ELISA kitR&D systemsDTC0Human for HEK-293T cells. 

参考文献

  1. Madeira, V. M. Overview of mitochondrial bioenergetics. Methods In Molecular Biology. 810, 1-6 (2012).
  2. Sakamuru, S., et al. Application of a homogenous membrane potential assay to assess mitochondrial function. Physiological Genomics. 44, 495-503 (2012).
  3. Clayton, D. A. Structure and function of the mitochondrial genome. Journal Of Inherited Metabolic Disease. 15, 439-447 (1992).
  4. Schatz, G. The protein import system of mitochondria. The Journal of Biological Chemistry. 271, 31763-31766 (1996).
  5. Mayer, A., Neupert, W., Lill, R. Mitochondrial protein import: reversible binding of the presequence at the trans side of the outer membrane drives partial translocation and unfolding. Cell. 80, 127-137 (1995).
  6. Green, D. R., Kroemer, G. The pathophysiology of mitochondrial cell death. Science. 305, 626-629 (2004).
  7. Shamas-Din, A., Kale, J., Leber, B., Andrews, D. W. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harbor Perspectives In Biology. 5, a008714 (2013).
  8. Hardwick, J. M., Youle, R. J. SnapShot: BCL-2 proteins. Cell. 138, 404 (2009).
  9. Zoratti, M., Szabo, I. The mitochondrial permeability transition. Biochimica et Biophysica Acta. 1241, 139-176 (1995).
  10. Wu, C. C., Bratton, S. B. Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxidants & Redox Signaling. 19, 546-558 (2013).
  11. Kuwana, T., et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Molecular Cell. 17, 525-535 (2005).
  12. Joshi, D. C., Bakowska, J. C. Determination of mitochondrial membrane potential and reactive oxygen species in live rat cortical neurons. Journal Of Visualized Experiments. , (2011).
  13. Vinsant, S., et al. Characterization of early pathogenesis in the SOD1(G93A) mouse model of ALS: part I, background and methods. Brain and Behavior. 3, 335-350 (2013).
  14. Vinsant, S., et al. Characterization of early pathogenesis in the SOD1(G93A) mouse model of ALS: part II, results and discussion. Brain and Behavior. 3, 431-457 (2013).
  15. Rajapakse, N., Shimizu, K., Payne, M., Busija, D. Isolation and characterization of intact mitochondria from neonatal rat brain. Brain research. Brain Research Protocols. 8, 176-183 (2001).
  16. Schmitt, S., et al. A semi-automated method for isolating functionally intact mitochondria from cultured cells and tissue biopsies. Analytical Biochemistry. 443, 66-74 (2013).
  17. Frezza, C., Cipolat, S., Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nature Protocols. 2, 287-295 (2007).
  18. Debatin, K. M., Poncet, D., Kroemer, G. Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene. 21, 8786-8803 (2002).
  19. Del Gaizo Moore, V., et al. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. The Journal of Clinical Investigation. 117, 112-121 (2007).
  20. Del Gaizo Moore, V., Schlis, K. D., Sallan, S. E., Armstrong, S. A., Letai, A. BCL-2 dependence and ABT-737 sensitivity in acute lymphoblastic leukemia. Blood. 111, 2300-2309 (2008).
  21. Li, N., et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. The Journal of Biological Chemistry. 278, 8516-8525 (2003).
  22. Hynes, J., et al. Investigation of drug-induced mitochondrial toxicity using fluorescence-based oxygen-sensitive probes. Toxicological Sciences : An Official Journal Of The Society of Toxicology. 92, 186-200 (2006).
  23. Papkovsky, D. B. Methods in optical oxygen sensing: protocols and critical analyses. Methods in enzymology. 381, 715-735 (2004).
  24. Galluzzi, L., et al. Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis : An International Journal On Programmed Cell Death. 12, 803-813 (2007).
  25. Gurney, M. E., et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 264, 1772-1775 (1994).
  26. Smith, P. K., et al. Measurement of protein using bicinchoninic acid. Analytical Biochemistry. 150, 76-85 (1985).
  27. Certo, M., et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell. 9, 351-365 (2006).
  28. Hogeboom, G. H., Schneider, W. C., Pallade, G. E. Cytochemical studies of mammalian tissues; isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. The Journal Of Biological Chemistry. 172, 619-635 (1948).
  29. Hogeboom, G. H., Claude, A., Hotch-Kiss, R. D. The distribution of cytochrome oxidase and succinoxidase in the cytoplasm of the mammalian liver cell. The Journal of Biological Chemistry. 165, 615-629 (1946).
  30. Marques-Fernandez, F., et al. TNFalpha induces survival through the FLIP-L-dependent activation of the MAPK/ERK pathway. Cell Death & Disease. 4, e493 (2013).
  31. Chao, C. C., Hu, S., Ehrlich, L., Peterson, P. K. Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain, Behavior, And Immunity. 9, 355-365 (1995).
  32. Downen, M., Amaral, T. D., Hua, L. L., Zhao, M. L., Lee, S. C. Neuronal death in cytokine-activated primary human brain cell culture: role of tumor necrosis factor-alpha. Glia. 28, 114-127 (1999).
  33. Schildberger, A., Rossmanith, E., Weber, V., Falkenhagen, D. Monitoring of endothelial cell activation in experimental sepsis with a two-step cell culture model. Innate Immunity. 16, 278-287 (2010).
  34. Brown, M. R., et al. Nitrogen disruption of synaptoneurosomes: an alternative method to isolate brain mitochondria. Journal Of Neuroscience Methods. 137, 299-303 (2004).
  35. Wong, A., Cortopassi, G. A. High-throughput measurement of mitochondrial membrane potential in a neural cell line using a fluorescence plate reader. Biochemical and Biophysical Research Communications. 298, 750-754 (2002).
  36. Blattner, J. R., He, L., Lemasters, J. J. Screening assays for the mitochondrial permeability transition using a fluorescence multiwell plate reader. Analytical Biochemistry. 295, 220-226 (2001).
  37. Kataoka, M., Fukura, Y., Shinohara, Y., Baba, Y. Analysis of mitochondrial membrane potential in the cells by microchip flow cytometry. Electrophoresis. 26, 3025-3031 (2005).
  38. Del Gaizo Moore, V., Payne, R. M. Transactivator of transcription fusion protein transduction causes membrane inversion. The Journal of Biological Chemistry. 279, 32541-32544 (2004).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

97 TMRE ALS HEK

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。