JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Here, we present a protocol with a sol-gel process to synthesize gold intercalated in the walls of mesoporous materials (GMS), which is confirmed to possess a mesoporous matrix with gold intercalated in the walls imparting great stability and recyclability.

摘要

作为有希望的催化活性纳米反应器,在介孔二氧化硅(GMS)的插层纳米金成功地合成和材料的性能进行了研究。我们使用了一锅溶胶 - 凝胶方法来插层中孔二氧化硅的壁金纳米颗粒。开始与合成,P123用作模板以形成胶束。然后TESPTS用作表面改性剂插层金纳米颗粒。按照此过程,TEOS加入在作为经历聚合过程在酸性环境中的二氧化硅源。热液处理和煅烧后,获得的最终产品。几种技术被用于表征金插孔二氧化硅的孔隙率,形态和结构。结果表明金插后的介孔二氧化硅的稳定的结构。通过苄醇的氧化为基准的反应,所述GMS材料表现出高选择素拉了一和可回收性。

引言

作为一项新兴技术,在催化领域的应用潜力巨大,纳米材料已收到深入研究的兴趣在过去几十年。当中的纳米级催化剂报道,贵金属催化剂,如金,银,钯和铂吸引了世界的广泛关注1-3。选择催化反应包括一氧化碳研究者氧化的金,赫克在Pd催化剂的反应,并与铂分解水。尽管有为催化潜力,纳米级金在其适用性由于从中毒,焦化,热降解,和烧结失活限制。已经报道了金,作为贵金属的代表,具有高的选择性和不易于金属浸出,过度氧化和自中毒4。然而,金的催化性能强烈地依赖于颗粒尺寸。春田等人已报告的催化性能与去之间的关系ld的团簇直径,这表明金催化剂的活性最高粒度〜2.7毫微米5。

贵金属的粒径,可以通过在制备方法6-9进行控制;然而,走向广阔的应用的主要障碍仍然聚集而失去活性。为了解决烧结的问题,通常的方法是将固定纳米级颗粒在载体材料上。各种辅助材料已应用于包括多孔二氧化硅10-11,半导体金属氧化物12-13,聚合物14,石墨烯15和碳纳米管16。之间所使用的材料,多孔硅石是一个有吸引力的材料作为支持,因为它是唯一的弱酸性,相对惰性的,热和化学稳定的,并且能以非常明确的内消旋/微孔隙率来制备。多孔结构提供了良好的支持金属颗粒,但也赋予的大小选择衬底通道的金属催化剂。这种选择性是因为与这些多孔材料有关的可调谐性的特别有前途的。通常情况下,金颗粒被发现是在硅胶上表面17-18极其移动和容易地当暴露于高温时形成非常大的(50 + nm)的反应性的颗粒,从而使得难以制备金纳米颗粒在二氧化硅上19。 Mukherjee 等。的单分散金纳米粒子上的介孔二氧化硅的MCM-41由3-氨基丙基-三甲氧基硅烷和3-巯基丙基-三乙氧基硅烷,以及支持的金纳米颗粒报道固定化被认为是用于氢化反应的高活性和无浸出的金被发现在反应20。

下面介孔二氧化硅的表面改性的报告中,我们报道了法制备金嵌入到介孔二氧化硅(GMS)的墙。此外,介孔二氧化硅支持的方法提供了一个可扩展的APproach潜在独立地改变催化剂和多孔环境。由于催化过程是重要的经济意义,带来的好处可能是深远的。开发能力的"绿色"催化剂会对环境产生深远的积极影响和改善重要的工业过程的经济可行性和资源利用效率。

Access restricted. Please log in or start a trial to view this content.

研究方案

1.准备大湄公河次区域

  1. 使用所有的化学品,在以下的处理作为接收。
  2. 制备75毫升的盐酸(HCl)溶液的2M。权衡将2.0g聚(乙二醇) - 嵌段 - 聚(丙二醇) - 嵌段 - 聚(乙二醇)(P123,MW = 5800),并转移到制备75的2M盐酸溶液。在RT,应用磁力搅拌的溶液在350转/分的速度,直至P123完全溶解。该解决方案将是明确的。
  3. 权衡4克四乙氧基硅烷(TEOS,MW = 208.33)在一个小瓶和转让180微升双[3-(三乙氧基甲硅烷基)丙基] - 四硫化物(TESPTS,MW = 538.94)到小瓶。慢摇瓶中混合使用这两种化学物质。在另一个小瓶中,称取38毫克氯金酸的(氯金酸4,99.90%)和溶解在1ml去离子水中。
  4. 增加的P123溶​​液温度至35℃的油浴温度由热电偶控制。
  5. 添加所有加入的TEOS的混合物和在步骤1.3至P123溶​​液制备TESPTS,并保持溶液在700转/分钟剧烈磁力搅拌。保持该溶液搅拌2分钟,然后加入所有的在30秒内制备,在步骤1.3滴加氯金酸4溶液。
  6. 保持溶液在700转/分在35℃下搅拌24小时。
  7. 24小时后,转移在一个烘箱中在100℃下进行72小时的溶液到一个密封的瓶子,并存储。这就是所谓的水热加工。
  8. 热液处理后,进行过滤以#1过滤纸和负压下的溶液的漏斗,然后用水洗涤两次,乙醇三次,以除去剩余的HCl。在每次洗涤过程中,加水或乙醇上方1厘米的固体,并等待该材料干燥。
  9. 从过滤转移沉淀到陶瓷坩埚中并煅烧在550℃进行4小时。设置斜坡程序如下:25℃〜550℃进行2小时,保持在550℃下进行4小时,然后使样品保留在炉中的门关闭,直到温度下降到低于40℃。
  10. 煅烧后,将产物用塑料刮铲转移至玻璃小瓶中。合成材料具有红色。

2.催化反应,苯甲醇的氧化

  1. 自苄醇的氧化是没有单独的溶剂的液相反应,测量5毫升苄醇(99.8%),并将其转移到25毫升三颈烧瓶中,然后称重10毫克GMS催化剂并将其添加到苯酒精。
  2. 设置了温度控制的油浴中磁搅拌,以保证反应温度精确和均匀的控制。
  3. 放与苄醇及催化剂的烧瓶放入油浴中,然后将温度设置为100℃,搅拌,在150转/分。
  4. 流动氧气与99.9%纯度到烧瓶中以2毫升/分钟通过一个质量流量控制器控制。
  5. 当...的时候将油浴温度达到100℃并稳定时,引入的氧气进入三颈烧瓶中。
  6. 保持氧气流率和温度恒定,并允许反应进行6小时。
  7. 反应后,过滤该产物与#1过滤纸。收集液相和等分试样转移到气相色谱(GC)小瓶中。在GC小瓶中,混合四部分HPLC级乙酸,每一个部分样品(例如,使用36微升样品和144微升乙酸。)将小瓶上气相色谱自动取样用于分析。上用DI水和乙醇在滤纸洗掉固体沉淀物,然后允许在空气中干燥。收集干燥的固体用刮铲作为再循环催化剂。
  8. 通过2.7使用回收的催化剂三次重复步骤2.3相同的实验过程。在每个重复,调整苄醇的量,以在步骤2.2中所述的比率匹配。

3.疗法大湄公河次区域的发作治疗热稳定性的测试

  1. 权衡合成GMS三个独立300mg的部分,并且将它们存储在玻璃小瓶中。这些被标记为1批,第2批和批3.保持1批为对照组,并把第2批和第3批入炉热加工。
  2. 程序作为在400℃以下进行处理炉:在0.5小时斜坡从25℃至400℃,在400℃下保持4小时,使样品保持与门的炉关闭,直到温度瀑布低于40℃。把第2批中的坩埚,并启动该程序。
  3. 程序作为在650℃以下进行处理炉:在0.75小时斜坡从25℃至650℃,在650℃下保持4小时,使样品保留在炉中门关闭,直到下面的温度下降40℃。把批3中的坩埚,并启动该程序。

4.表征GMS材料21,22

  1. 上的物理吸附仪器,脱气GMS材料与以下程序:90℃60分钟,然后350℃,480分钟。运行在脱气材料全等温线的分析来获得物理吸附数据。
  2. 分散GMS样品上200目多孔碳TEM网格并观察透射型电子显微镜下的样品。限制44,000X放大倍率下,以保护材料。
  3. 运行的XRD用CuKα射线(λ= 1.5418)。集管电压为45kV,和40毫安管电流。收集强度在2θ范围在10°和90°与0.008°的步长和5秒的每一步的测量时间。

Access restricted. Please log in or start a trial to view this content.

结果

该方法是用来比较在正常(HBEC30KT)血红素合成的水平与癌(HCC4017)肺细胞。 图2示出了血红素合成中的癌细胞(HCC4017)比正常肺细胞(HBEC30KT)的更高的水平。血红素合成的水平,也测量在正常细胞和癌细胞中的线粒体解偶联剂羰氰-3-氯苯(CCCP)的存在。用10微米的CCCP的血红素合成水平测量之前处理细胞24小时。正如所料,血红素合成的水平( 图2)中的CCCP的在正常和?...

Access restricted. Please log in or start a trial to view this content.

讨论

内的合成方案,关注的表面活性剂的浓度,pH值的溶液中,反应温度是在成功形成GMS是至关重要的。关键步骤是1.2,1.3,1.4和1.6。上述参数控制从表面活性剂形成的胶束的临界堆积参数和相位。胶束的相位和形态确定二氧化硅基质,将成为用于GMS框架的最终状态。另外,在形成过程中重要的是该序列和时间添加氯金酸溶液。 TEOS和TESPTS分别作为二氧化硅源和表面改性剂。加入两种化学物质首先确保...

Access restricted. Please log in or start a trial to view this content.

披露声明

The authors have nothing to disclose.

致谢

The authors acknowledge National Science Foundation grant CHE- 1214068 for supporting this research project.

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)Aldrich435465-250ML
tetraethoxysilaneTCI201-083-8
bis[3-(triethoxysilyl)propyl]-tetrasulfideGELESTSIB1825.0-100GM
chloroauric acidAldrich520918-1G
benzyl alcoholSigma-Aldrich305197-1L
nitrogen physisorptionMicromeriticsTristar II
X-ray diffractionPhilipsX'Pert Pro
transmission electron microscopyPhilipsCM200
gas chromatographyShimadzuGC-2010

参考文献

  1. Liguras, D. K., Kondarides, D. I., Verykios, X. E. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Appl. Catal. B-Environ. 43 (4), 345-354 (2003).
  2. Gelin, P., Primet, M. Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Appl. Catal. B-Environ. 39 (1), 1-37 (2002).
  3. Lu, S. F., Pan, J., Huang, A. B., Zhuang, L., Lu, J. T. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl. Acad. Sci. U. S. A. 105 (52), 20611-20614 (2008).
  4. Ma, C. Y., et al. Catalytic oxidation of benzyl alcohol on Au or Au–Pd nanoparticles confined in mesoporous silica. Applied Catalysis B: Environmental. 92 (1-2), 202-208 (2009).
  5. Bamwenda, G. R., Tsubota, S., Nakamura, T., Haruta, M. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catalysis Letters. 44 (1-2), 83-87 (1997).
  6. Brown, K. R., Walter, D. G., Natan, M. J. Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size. 12 (2), 306-313 (2000).
  7. Niesz, K., Grass, M., Somorjai, G. A. Precise control of the Pt nanoparticle size by seeded growth using EO13PO30EO13 triblock copolymers as protective agents. Nano Lett. 5 (11), 2238-2240 (2005).
  8. Yuranov, I., et al. Pd/SiO2 catalysts: synthesis of Pd nanoparticles with the controlled size in mesoporous silicas. J. Mol. Catal. A-Chem. 192, 1-2 (2003).
  9. Brinas, R. P., Hu, M. H., Qian, L. P., Lymar, E. S., Hainfeld, J. F. Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J. Am. Chem. Soc. 130 (3), 975-982 (2008).
  10. Zhu, H. G., Liang, C. D., Yan, W. F., Overbury, S. H., Dai, S. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. J. Phys. Chem. B. 110 (22), 10842-10848 (2006).
  11. Gabaldon, J. P., Bore, M., Datye, A. K. Mesoporous silica supports for improved thermal stability in supported Au catalysts. Top. Catal. 44 (1-2), 253-262 (2007).
  12. Li, F. B., Li, X. Z. The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere. 48 (10), 1103-1111 (2002).
  13. Sakthivel, S., et al. Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res. 38 (13), 3001-3008 (2004).
  14. Jia, C. G., Wang, Y. P., Feng, H. Y. Preparation and Catalytic Properties Of Polymer-Supported Fe-Co-Cu And Fe-Co-Au Pentametallic Clusters. React. Polym. 18 (3), 203-211 (1992).
  15. Yu, X. Q., et al. Reduced graphene oxide supported Au nanoparticles as an efficient catalyst for aerobic oxidation of benzyl alcohol. Appl. Surf. Sci. 280, 450-455 (2013).
  16. Xu, Y. Y., et al. Au@Pt core-shell nanoparticles supported on multiwalled carbon nanotubes for methanol oxidation. Catal. Commun. 13 (1), 54-58 (2011).
  17. Baker, C. O., et al. Size Control of Gold Nanoparticles Grown on Polyaniline Nanofibers for Bistable Memory Devices. ACS Nano. 5 (5), 3469-3474 (2011).
  18. Wei, G. -T., Yang, Z., Lee, C. Y., Yang, H. Y., Wang, C. R. Aqueous−Organic Phase Transfer of Gold Nanoparticles and Gold Nanorods Using an Ionic Liquid. J. Am. Chem. Soc. 126 (16), 5036-5037 (2004).
  19. Gadenne, B., Hesemann, P., Moreau, J. E. Supported ionic liquids: ordered mesoporous silicas containing covalently linked ionic species. Chemical Communications. 15, 1768-1769 (2004).
  20. Yang, J. H., et al. Understanding preparation variables in the synthesis of Au/Al2O3 using EXAFS and electron microscopy. Applied Catalysis A: General. 291 (1-2), 73-84 (2005).
  21. Chen, L. F., et al. Intercalation of aggregation-free and well-dispersed gold nanoparticles into the walls of mesoporous silica as a robust ‘green’ catalyst for n-alkane oxidation. Journal of the American Chemical Society. 131, 914-915 (2009).
  22. Wang, X., et al. Nanoscale gold intercalated into mesoporous silica as a highly active and robust catalyst. Nanotechnology. 23, 294010-294018 (2012).
  23. Chen, L. F., et al. Controlled synthesis of nanoscale icosahedral gold particles at room temperature. Chemcatchem. 4, 1662-1667 (2012).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

101

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。