A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we present a protocol with a sol-gel process to synthesize gold intercalated in the walls of mesoporous materials (GMS), which is confirmed to possess a mesoporous matrix with gold intercalated in the walls imparting great stability and recyclability.
As a promising catalytically active nano reactor, gold nanoparticles intercalated in mesoporous silica (GMS) were successfully synthesized and properties of the materials were investigated. We used a one pot sol-gel approach to intercalate gold nano particles in the walls of mesoporous silica. To start with the synthesis, P123 was used as template to form micelles. Then TESPTS was used as a surface modification agent to intercalate gold nano particles. Following this process, TEOS was added in as a silica source which underwent a polymerization process in acid environment. After hydrothermal processing and calcination, the final product was acquired. Several techniques were utilized to characterize the porosity, morphology and structure of the gold intercalated mesoporous silica. The results showed a stable structure of mesoporous silica after gold intercalation. Through the oxidation of benzyl alcohol as a benchmark reaction, the GMS materials showed high selectivity and recyclability.
As an emerging technology that has great potential in catalysis applications, nanoscale materials have received intensive research interest in the past decades. Amongst the nanoscale catalysts reported, noble metal catalysts such as Au, Ag, Pd and Pt have attracted world-wide attention 1-3. Select catalytic reactions include the oxidation of carbon monoxide researchers on Au, Heck reaction on Pd catalysts, and water splitting with Pt. In spite of the promising catalytic potential, nanoscale gold is limited in its applicability due to deactivation from poisoning, coking, thermal degradation, and sintering. It has been reported that gold, as a representative for noble metals, has high selectivity and is less prone to metal leaching, over-oxidation, and self-poisoning4. However, the catalytic performance of gold strongly depends on the particle size. Haruta et al. has reported the relationship between catalytic performance and gold cluster diameter, demonstrating the highest activity of gold catalysts with particle size ~ 2.7 nm5.
The particle size of noble metals can be controlled by the preparation method6-9; however, the major hindrance towards broad application remains aggregation and loss of activity. To solve the problem of sintering, a common method is to immobilize nanoscale particles on a support material. Various support materials have been applied including porous silica10-11, semiconducting metal oxides12-13, polymers14, graphene15 and carbon nanotubes16. Amongst the materials used, porous silica is an attractive material as a support because it is only mildly acidic, relatively inert, thermally and chemically stable, and can be prepared with very well defined meso-/micro-porosity. The porous structure provides good support for metal particles but also imparts size selective substrate access to the metal catalysts. This selectivity is particularly promising because of the tunability associated with these porous materials. Often, gold particles are found to be extremely mobile on silica surfaces17-18 and readily form very large (50+ nm) unreactive particles when exposed to high temperatures, thus making it difficult to prepare gold nanoparticles on silica19. Mukherjee et al. reported immobilization of monodispersed gold nanoparticles on mesoporous silica MCM-41 by 3-aminopropyl-trimethoxysilane and 3-mercaptopropyl-triethoxysilane, and the supported gold nanoparticles were found to be highly active for hydrogenation reactions and no leaching of gold was found in the reaction20.
Following the report of surface modification of mesoporous silica, we reported a method to prepare gold intercalated into the wall of mesoporous silica (GMS). Additionally, the mesoporous silica supported approach offers a scalable approach to potentially independently alter the catalyst and porous environment. Since catalytic processes are of vital economic importance, the benefits could be far reaching. The ability to develop “green” catalysts would have a profound positive impact on the environment and improve the economic feasibility and resource efficiency of important industrial processes.
Access restricted. Please log in or start a trial to view this content.
1. Preparation of GMS
2. Catalytic Reaction, Oxidation of Benzyl Alcohol
3. Thermal Treatment of GMS for Testing of Thermal Stability
4. Characterization of GMS Materials21,22
Access restricted. Please log in or start a trial to view this content.
This method was used to compare the levels of heme synthesis in normal (HBEC30KT) vs. cancer (HCC4017) lung cells. Figure 2 shows a higher level of heme synthesis in cancer cells (HCC4017) than normal lung cells (HBEC30KT). The level of heme synthesis was also measured in normal and cancer cells in the presence of mitochondrial uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Cells were treated with 10 μM CCCP for 24 hr before the measurement of heme synthesis levels. As expected, the leve...
Access restricted. Please log in or start a trial to view this content.
Within the synthesis protocol, attention to surfactant concentration, pH of solution and reaction temperature is critical to the successful formation of GMS. The critical steps are 1.2, 1.3, 1.4 and 1.6. The above mentioned parameters control the critical packing parameter and phase of micelles formed from surfactant. The phase and morphology of micelle determines the final state of silica matrix, which serves as the framework for GMS. Also important in the formation process is the sequence and time to add the HAuCl solu...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
The authors acknowledge National Science Foundation grant CHE- 1214068 for supporting this research project.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) | Aldrich | 435465-250ML | |
tetraethoxysilane | TCI | 201-083-8 | |
bis[3-(triethoxysilyl)propyl]-tetrasulfide | GELEST | SIB1825.0-100GM | |
chloroauric acid | Aldrich | 520918-1G | |
benzyl alcohol | Sigma-Aldrich | 305197-1L | |
nitrogen physisorption | Micromeritics | Tristar II | |
X-ray diffraction | Philips | X'Pert Pro | |
transmission electron microscopy | Philips | CM200 | |
gas chromatography | Shimadzu | GC-2010 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved