需要订阅 JoVE 才能查看此. 登录或开始免费试用。
Method Article
The creation of functional microtissues within microfluidic devices requires the stabilization of cell phenotypes by adapting traditional cell culture techniques to the limited spatial dimensions in microdevices. Modification of collagen allows the layer-by-layer deposition of ultrathin collagen assemblies that can stabilize primary cells, such as hepatocytes, as microfluidic tissue models.
Although microfluidics provides exquisite control of the cellular microenvironment, culturing cells within microfluidic devices can be challenging. 3D culture of cells in collagen type I gels helps to stabilize cell morphology and function, which is necessary for creating microfluidic tissue models in microdevices. Translating traditional 3D culture techniques for tissue culture plates to microfluidic devices is often difficult because of the limited channel dimensions. In this method, we describe a technique for modifying native type I collagen to generate polycationic and polyanionic collagen solutions that can be used with layer-by-layer deposition to create ultrathin collagen assemblies on top of cells cultured in microfluidic devices. These thin collagen layers stabilize cell morphology and function, as shown using primary hepatocytes as an example cell, allowing for the long term culture of microtissues in microfluidic devices.
Although microfluidics allows for the exquisite control of the cellular microenvironment, culturing cells, especially primary cells, within microfluidic devices can be challenging. Many traditional cell culture techniques have been developed to sustain and stabilize cell function when cultured in tissue culture plates, but translating those techniques to microfluidic devices is often difficult.
One such technique is the culture of cells on or sandwiched between collagen gels as a model of the physiological 3D cell environment.1 Type I collagen is one of the most frequently used proteins for biomaterials applications because of its ubiquity in extracellular matrix, natural abundance, robust cell attachment sites, and biocompatibility.2 Many cells benefit from 3D culture with collagen, including cancer cells3,45, microvascular endothelial cells6, and hepatocytes7, among others. While the use of collagen gels is easy in open formats, such as tissue culture plates, the limited channel dimensions and enclosed nature of microfluidic devices makes the use of liquids that gel impractical without blocking the entire channel.
To overcome this problem, we combined the layer-by-layer deposition technique8 with chemical modifications of native collagen solutions to create ultrathin collagen assemblies on top of cells cultured in microfluidic devices. These layers can stabilize cell morphology and function similar to collagen gels and can be deposited on cells in microfluidic devices without blocking the channels with polymerized matrix. The goal of this method is to modify native collagen to create polycationic and polyanionic collagen solutions and to stabilize cells in microfluidic culture by depositing thin collagen matrix assemblies onto the cells. This technique has been used to stabilize the morphology and function of primary hepatocytes in microfluidic devices.9
Although layer-by-layer deposition has previously been reported with natural and synthetic polyelectrolytes10 to cover hepatocytes in plate culture11,12 and as a seeding layer for hepatocytes in microfluidic devices13,14, this method describes the deposition of a pure collagen layer on top of hepatocytes, mimicking the 3D collagen culture techniques. In this protocol, we use hepatocytes as example cells that can be maintained using 3D collagen layers. The many other types of cells that benefit from 3D culture in collagen may similarly benefit from culture after layer-by-layer deposition of an ultrathin collagen matrix assembly.
1.准备本机可溶性胶原溶液中
2.胶原蛋白甲基化
3.胶原蛋白琥珀酰化
4.验证了胶原蛋白修饰的
5.制造微流体装置和细胞接种
6.层 - 层胶原沉积
7.稳定细胞表型和功能的
天然胶原可以使用甲基化和琥珀酰化创建用于在层 - 层沉积用聚阳离子和聚阴离子胶原溶液进行修改。琥珀酰化修饰天然胶原的ε-氨基与琥珀基团,和甲基化修饰天然胶原的羧基与甲基(图1A)。这些修改到胶原蛋白的氨基酸侧链改变pH滴定曲线的解决方案。琥珀酰化降低氨基团的数目,增加羧基基团的数目,而甲基化对氨基没有影响,并减少羧基基团的数目,相比于天然胶原?...
超薄纯胶原组件可以沉积在使用改性胶原的层 - 层淀积带电的细胞或材料的表面。这项研究的结果表明,甲基化和天然胶原的琥珀酰化创建聚阳离子和聚阴离子胶原溶液(图1)可与层-层技术用于沉积超薄胶原基质组件上的细胞( 图2)或其它带电材料表面。这种超薄基质层可以稳定形态,存活率,和偏振细胞如肝细胞(图3),播种在微流体装置,以及它们?...
The authors have nothing to disclose.
This work was supported by grants from the National Institutes of Health, including a microphysiological systems consortium grant from the National Center for Advancing Translational Sciences (UH2TR000503), a Ruth L. Kirschstein National Research Service Award Postdoctoral Fellowship (F32DK098905 for WJM) and pathway to independence award (DK095984 for AB) from the National Institute of Diabetes and Digestive and Kidney Diseases.
Name | Company | Catalog Number | Comments |
collagen type I, rat tail | Life Technologies | A1048301 | option for concentrated rat tail collagen |
collagen type I, rat tail | Sigma-Aldrich | C3867-1VL | option for concentrated rat tail collagen |
collagen type I, rat tail | EMD Millipore | 08-115 | option for concentrated rat tail collagen |
collagen type I, rat tail | R%D Systems | 3440-100-01 | option for concentrated rat tail collagen |
succinic anhydride | Sigma-Aldrich | 239690-50G | succinylation reagent |
anhydrous methanol | Sigma-Aldrich | 322415-100ML | methylation reagent |
sodium hydroxide | Sigma-Aldrich | S5881-500G | pH precipitation reagent |
hydrochloric acid | Sigma-Aldrich | 320331-500ML | pH precipitation reagent |
rat collagen type I ELISA | Chondrex | 6013 | option for detecting collagen content |
hydroxyproline assay kit | Sigma-Aldrich | MAK008-1KT | option for detecting collagen content |
hydroxyproline assay kit | Quickzyme Biosciences | QZBtotcol1 | option for detecting collagen content |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。