JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

This article describes construction of a series of hydrogen-bonding supramolecular clusters in crystals using primary ammonium triphenylacetates, which are recrystallized from non-polar solvents. This selective construction of the supramolecular clusters leads to effective systematical symmetric studies about a correlation between the supramolecular clusters and their components.

摘要

在纳米或亚纳米级集群功能显著取决于不仅种类及其部件,而且安排,或对称,其组成部分。因此,在群集的安排已被精确地表征,特别是对金属配合物。与此相反,在有机分子组成的超分子簇分子安排表征限于少数病例。这是因为,超分子簇,尤其是获得了一系列超分子簇的结构,是困难的,由于非共价键的稳定性低比较共价键。从这个观点出发,有机盐利用是最有用的策略之一。一系列的超分子可以通过与各种抗衡离子的特定有机分子的组合来构造。尤其,伯铵羧酸盐是适合作为超分子因为各种羧酸的典型例子和伯胺是市售的,而且很容易改变其组合。以前,有人证实,使用各种伯胺的伯铵triphenylacetates具体构造超分子簇,这是由四个铵和四个triphenylacetates通过电荷辅助氢键组装时,在从非极性溶剂得到的结晶。这项研究表明超分子集群作为一种战略来进行系统性研究对称澄清在超分子的分子安排和种类及其组件的数量之间的相关性的具体构造的应用。与triphenylacetates构成二进制的盐和一种伯铵的,triphenylacetates组成三元有机盐和两种铵的相同的方式构造的超分子簇,得到与部件的各种种类和数量的一系列超分子簇的。

引言

超分子是有趣和重要的研究目标,因为其独特的功能,如建筑超分子结构的,离子和/或分子,以及手性分离的感测,使用柔性非共价键1-11来自它们的分子识别能力。在分子认可,超分子组装的对称性是最重要的因素之一。尽管重要性,但仍然难以与由于在数量和种类的组件以及角度和非共价键的距离灵活性所需的对称性设计超分子。

基于系统化的研究超分子及其部件的对称性之间的相关性的澄清,是实现所需的超分子结构有用的策略。为了这个目的,超分子簇被选定为研究的目标,因为它们是由部件的数量有限的d为评估的理论12-14。然而,与金属配合物,有的构建超分子簇由于非共价键的稳定性低对维持超分子结构15,16的报告的数量有限。这个低稳定性也成为在获得一系列具有同种结构的超分子组装的问题。在这项研究中,有机盐,这是最稳健的非共价键17-20的一个电荷辅助氢键,主要用于构造特定超分子组装优先21-32。它还值得注意的是有机盐是由酸和碱,并且因此许多种有机盐仅仅通过酸和碱的不同组合的混合很容易获得。尤其,有机盐是对系统的研究中是有用,因为与各种抗衡离子的特定成分的组合产生相同类型supramo的lecular组件。因此,能够以比较根据各种抗衡离子的超分子组装的结构上的差异。

在以前的作品,超分子与0维(0-D)中,一维(1-D)和二维(2-D)由伯铵羧酸氢键网络被确认,并从手性的观点来看,其特征32。这些多维超分子是分层的水晶设计27重要的研究目标,以及利用其维度的应用。另外,氢键网络的表征将得到约生物分子的,因为所有的氨基酸的作用的重要知识有铵和羧酸基团。提供指引,以获得这些超分子分别使他们在应用进一步的机会。在这些超分子,建设的超分子簇以0-D-氢键网络是relativelŸ困难,表现在统计研究,28。然而,澄清的因素为构成超分子簇后,将它们有选择地构成,得到21-25,32一系列超分子簇。这些作品使人们有可能在超分子簇进行系统化对称的研究,阐明了超分子簇的依赖分量对称特性。为了这个目的,伯铵triphenylacetates的超分子簇具有有趣的特点,那就是,其拓扑多种氢键网络24,32,这将反映其对称的功能,以及作为组分三苯甲基的手性构象图1a和1b)中 。这里方法论构建一系列使用伯铵triphenylacetates超分子簇和用于表征超分子簇的对称特征是魔trated。对于超分子簇的结构键引入从非极性溶剂的有机盐的笨重三苯甲基的和重结晶。二元和三元伯铵triphenylacetates被用于超分子簇的结构制备。从氢键网络24,32三苯甲基33,34,形貌(构象),和分子安排octacoordinated多面体12(图1c)的类似物拓扑观点考虑晶体学研究揭示了超分子簇的依赖分量对称特性25。

研究方案

1.单晶制备组合主铵Triphenylacetates的

  1. 制备的有机盐,伯铵triphenylacetates(图1a)。
    1. 溶解三苯基乙酸(TPAA,0.10克,0.35毫摩尔)和伯胺:N丁胺(N,2.5×10 -2克,0.35毫摩尔),异(isoBu,2.5×10 -2克,0.35毫摩尔),T丁胺叔卜,2.5×10 -2克,0.35毫摩尔),或在TPAA -amylamine(叔上午,3.0×10 -2克,0.35毫摩尔),一起在甲醇(20毫升):胺= 1:用于制备二元有机盐的摩尔比为1:1。
    2. 在三元有机盐的情况下,溶解TPAA(0.10克,0.35毫摩尔)和两种伯胺:N(1.3×10 -2克,0.17毫摩尔) - T的卜(1.3×10 -2克,0.17毫摩尔),N(1.3×10 -2克,0.17毫摩尔) - T的上午(1.5×10 -2克,0.17毫摩尔),异卜(1.3×10 -2克,0.17毫摩尔) - T的卜(1.3×10 -2克,0.17毫摩尔),或isoBu(1.3×10 -2克,0.17毫摩尔) - T的上午(1.5×10 -2 g加速度 ,0.17毫摩尔),一起在甲醇(20毫升)的TPAA:胺-1:胺-2 = 2:1:1。
    3. 蒸发所有通过旋转蒸发仪(40°C,200托)的解决方案,获得有机盐:TPAA-ñ卜,TPAA-isoBu,TPAA- 牛逼卜,TPAA- 牛逼上午,TPAA-ñ官僚牛逼卜,TPAA- ñ官僚ŧ上午,TPAA-isoBu- 牛逼卜和TPAA-isoBu-Ť上午。
  2. 准备超分子簇构成的单晶。
    1. 溶解每玻璃小瓶中在甲苯中作为非极性的良溶剂,其被选择是因为超分子簇在非极性环境优选构造的有机盐(5.0毫克)(0.30毫升)的。对于有机盐TPAA- 牛逼卜,TPAA- 牛逼上午,TPAA-isoBu- 牛逼卜和TPAA-isoBu- 牛逼上午,热甲苯上升ŤØ40℃溶解。
    2. 添加己烷:0.5毫升,0.5毫升,0.5毫升,2毫升,2毫升,1毫升和0.5毫升,以TPAA-Ñ卜,TPAA-isoBu,TPAA- 上午,TPAA- n的有机盐的溶液官僚ŧ,TPAA-ñ- T的上午,TPAA-isoBu- 牛逼卜和TPAA-isoBu- 牛逼上午,分别作为不良溶剂以降低有机盐的溶解,除了有机盐溶液TPAA-ŧ卜。
    3. 保持溶液稳定在在玻璃小瓶室温,在一天之内,得到单晶。
  3. 确认由傅立叶有机盐形成变换红外(FT-IR)光谱35,36。
    1. 在1混合用溴化钾(KBr压)的有机盐的单晶:100的重量比。
    2. 用玛瑙研钵研磨该混合物,直到它变均匀粉末混合物。
    3. 填补了一个圆模(直径5毫米)的粉末混合物,并用p粒料用压片机ressing它。
    4. 把沉淀成的FT-IR光谱仪,并进行测量(累积数:16,分辨率1 -1)。

2.晶体学研究

  1. 拿起从玻璃的有机盐TPAA- 上午的高质量单晶小瓶石蜡在玻璃板上。晶体看起来均匀的立体显微镜下,这意味着在晶体不是多晶,但单晶的组件,并具有0.3左右至1毫米的晶体尺寸无裂缝。
  2. 把单晶上一个循环。
  3. 设置在单晶X射线衍射设备单晶循环。
  4. 选择一个准直仪:0.3,0.5,0.8,或1毫米,这取决于单个晶体的最大尺寸。
  5. 启动单晶X射线衍射的预备测量使用单一C来自单晶收集X-射线衍射图案37,38rystal X射线衍射设备(辐射源:石墨单色CuKαα(λ= 1.54187埃),曝光时间:30秒(确定基于所述晶体尺寸),检测器:例如成像板,晶体到检测器距离:127.40毫米,温度:213.1 K,帧数:3)。
  6. 确定可能的晶体参数,并设定条件:曝光时间,X射线曝光的角度:ω,χ,φ,和帧数,对于基于上述预备测量的结果以下的测定。
  7. 启动单晶X射线衍射的定期测量使用的条件下,单晶X-射线衍射设备来收集X射线衍射图案从单晶37,38(辐射源:石墨单色CuKαα(λ= 1.54187埃),检测器:例如成像板,晶体到探测器DISTANCE:127.40毫米,温度:213.1 K)。
  8. 通过直接的方法解决来自衍射图案的晶体结构,SIR2004 39或 SHELXS97 40,以及通过使用基于F 2的所有观察到的反射一个全矩阵最小二乘法修正。缩小所有各向异性位移参数的非氢原子,并放置的氢原子与相对于连接的非氢原子和未精制各向同性位移参数理想化位置。执行使用软件这些计算,如CrystalStructure 41。
  9. 准直仪的尺寸,X射线预备测量和定期测量的曝光时间,和X射线曝光的角度:从步骤2.1至2.8与条件一些修改重复程序ω,χ,φ,和帧数,对有机盐的单晶:TPAA-ñ官僚牛逼,TPAA-ñ官僚 T时许,TPAA-isoBu- 牛逼卜和TPAA-isoBu- 牛逼上午透露他们的晶体结构。
  10. 检索有机盐的晶体结构:TPAA-ñ(refcode:MIBTOH)22,TPAA-isoBu(refcode:GIVFEX)24 TPAA- 牛逼(refcode:GIVFIB)23日,使用软件剑桥结构数据库42,征服43,或申请表44。
  11. 调查在通过使用软件如汞45-48和PYMOL 49计算机图形学的晶体结构的超分子集群;通过与以前归类那些图1b)和三苯基作为Λ或Δ(图1a)的手性构象进行比较所得到的图案确定的在超分子簇氢键模式点群对称性。
  12. 表征在每个晶体结构的超分子簇的多面体特征的有机盐。
    1. 删除所有的超分子簇的原子的除组分羧酸根阴离子和铵阳离子的碳和氮原子。
    2. 使其中的原羧酸和铵阳离子由氢键连接的碳和氮原子之间的键。
    3. 测量碳 - 碳和氮的氮原子,并且用于制备进一步键(5.3和4.1埃为碳 - 碳和氮 - 氮的距离,分别在这项研究中)设置的边界之间的距离。
    4. 使碳 - 碳和氮的氮原子之间的进一步键,其中距离小于5.4和4.2埃,分别。
    5. 确定产生的有机盐的多面体:TPAA-isoBu,TPAA- 牛逼卜,TPAA- 牛逼上午,TPAA-isoBu- 牛逼卜和TPAA-isoBu- 牛逼上午, 式-bicapped八面体(T波),三角十二面体(TD),TD,TD和TD分别由considerin克旋转轴线 (C 3或C 2),以及所述多面体的边数。
    6. 进行其他债券向所得的有机盐的多面体:TPAA-Ñ,TPAA-ÑBU- 卜和TPAA-ÑBU- 上午,通过考虑在超分子簇两侧,对称元素,以及分子间的相互作用的数因为他们有理想的人少面:TD,T波和四方反棱柱(SA)。
    7. 通过做两个除了债券,由于其C 2对称性和14原债券确定TPAA-ñ卜盐Sa的多面体。确定TPAA-ÑBU- 卜和TPAA-ÑBU- 上午作为TD基于它们 C 2对称性和超分子簇周围的三苯甲基的"带"的有机盐的其它多面体。即,在三元有机盐的超分子簇的三苯基团形成4;带"通过啮合他们的三苯基环和所述多面体TD具有侧连接4酸( 图1c(ⅱ)),这意味着它们具有类似的结构特征。

结果

TPAA和伯胺的有机盐形成分别通过FT-IR测量的证实。有机盐的晶体结构经单晶X-射线衍射测定进行分析。其结果是,同种的超分子簇,这是由四个铵和四个triphenylacetates通过电荷辅助氢键图1a)的,是在所有的有机盐的单晶确认种类和数量而不管成分铵表1, 图2)。这一结果适用于系统性对称性研究,以澄清相关组件对称品种超分子...

讨论

一系列封闭的氢键网络的超分子簇的成功构建和使用TPAA,其中有一个三苯甲基,及各类与伯胺的组合的有机盐手性的观点和多面体特征表征。在该方法中,关键的步骤是引入具有从非极性溶剂中的分子和反离子组成的有机盐膨松三苯甲基和重结晶的分子。这是因为,超分子簇具有一个倒胶束结构,即,离子氢键和疏水烃是内,外,分别。因此,该超分子簇是稳定的,在非极性环境中被选择性地构...

披露声明

The authors have nothing to disclose.

致谢

This work was financially supported by Grant-in-Aid for Scientific Research B (24350072, 25288036) and Grant-in-Aid for Scientific Research on Innovative Areas (24108723) from MEXT and JSPS, Japan. T.S. acknowledges Grant-in-Aid for JSPS Fellows (25763), the GCOE Program of Osaka University and Grants for Excellent Graduate Schools, MEXT, Japan.

材料

NameCompanyCatalog NumberComments
Triphenylacetic acidAldrichT81205-10G
n-ButylamineTCIB0707
IsobutylamineTCII0095
tert-ButylamineTCIB0709
tert-AmylamineTCIA1002
MethanolWako131-01826hazardous substance
TolueneWako204-01866hazardous substance
HexaneWako085-00416
KBrWako165-17111

参考文献

  1. Lehn, J. -. M. . Supramolecular Chemistry. , (1995).
  2. Lehn, J. -. M. Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization. Angew. Chem. Int. Ed. Engl. 29 (11), 1304-1319 (1990).
  3. Lehn, J. -. M. From Supramolecular Chemistry towards Constitutional Dynamic Chemistry and Adaptive Chemistry. Chem. Soc. Rev. 36 (2), 151-160 (2007).
  4. Fabbrizzi, L., Poggi, A. Sensors and Switches from Supramolecular Chemistry. Chem. Soc. Rev. 24 (3), 197-202 (1995).
  5. Zeng, F., Zimmerman, S. C. Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly. Chem. Rev. 97 (5), 1681-1712 (1997).
  6. Joseph, R., Rao, C. P. Ion and Molecular Recognition by Lower Rim 1,3-Di-conjugates of Calix[4]arene as Receptors. Chem. Rev. 111 (8), 4658-4702 (2011).
  7. Kinbara, K., Hashimoto, Y., Sukegawa, M., Nohira, H., Saigo, K. Crystal Structures of the Salts of Chiral Primary Amines with Achiral Carboxylic Acids: Recognition of the Commonly-Occurring Supramolecular Assemblies of Hydrogen-Bond Networks and Their Role in the Formation of Conglomerates. J. Am. Chem. Soc. 118 (14), 3441-3449 (1996).
  8. Tamura, R., et al. Mechanism of Preferential Enrichment, an Unusual Enantiomeric Resolution Phenomenon Caused by Polymorphic Transition during Crystallization of Mixed Crystals Composed of Two Enantiomers. J. Am. Chem. Soc. 124 (44), 13139-13153 (2002).
  9. Megumi, K., Arif, F. N. B. M., Matumoto, S., Akazome, M. Design and Evaluation of Salts between N-Trityl Amino Acid and tert-Butylamine as Inclusion Crystals of Alcohols. Cryst. Growth Des. 12 (11), 5680-5685 (2012).
  10. Davey, R. J., et al. Racemic Compound Versus Conglomerate: Concerning the Crystal Chemistry of the Triazoylketone, 1-(4-chlorophenyl)-4,4-dimethyl-2-(1 H-1,2,4-triazol-1-yl)pentan-3-one. CrystEngComm. 16 (21), 4377-4381 (2014).
  11. Iwama, S., et al. Highly Efficient Chiral Resolution of DL-Arginine by Cocrystal Formation Followed by Recrystallization under Preferential-Enrichment Conditions. Chem. Eur. J. 20 (33), 10343-10350 (2014).
  12. Connelly, N. G., Damhus, T., Hartshorn, R. M., Hutton, A. T. . Nomenclature of Inorganic Chemistry − IUPAC Recommendations 2005. , (2005).
  13. McDonald, S., Ojamäe, L., Singer, S. J. Graph Theoretical Generation and Analysis of Hydrogen-Bonded Structures with Applications to the Neutral and Protonated Water Cube and Dodecahedral Cluster. J. Phys. Chem. A. 102 (17), 2824-2832 (1998).
  14. Xantheas, S. S., Dunning, T. H. Ab initio. Studies of Cyclic Water Cluster (H2O)n, n = 1-6. I. Optimal Structures and Vibrational Spectra. J. Chem. Phys. 99 (11), 8774-8792 (1993).
  15. MacGillivray, L. R., Atwood, J. L. A chiral spherical molecular assembly held together by 60 hydrogen bonds. Nature. 389 (6650), 469-472 (1997).
  16. Liu, Y., Hu, A., Comotti, A., Ward, M. D. Supramolecular Archimedean Cages Assembled with 72 Hydrogen Bonds. Science. 333 (6041), 436-440 (2011).
  17. Mautner, M. The Ionic Hydrogen Bond. Chem. Rev. 105 (1), 213-284 (2005).
  18. Ward, M. D. Charge-Assisted Hydrogen-Bonded Networks. Struct. Bond. 132, 1-23 (2009).
  19. Holman, K. T., Pivovar, A. M., Ward, M. D. Engineering Crystal Symmetry and Polar Order in Molecular Host Frameworks. Science. 294 (5548), 1907-1911 (2001).
  20. Ward, M. D. Design of Crystalline Molecular Networks with Charge-Assisted Hydrogen Bonds. Chem. Commun. 47, 5838-5842 (2005).
  21. Tohnai, N., et al. Well-Designed Supramolecular Clusters Comprising Triphenylmethylamine and Various Sulfonic Acids. Angew. Chem. Int. Ed. 46 (13), 2220-2223 (2007).
  22. Yuge, T., Tohnai, N., Fukuda, T., Hisaki, I., Miyata, M. Topological Study of Pseudo-Cubic Hydrogen-Bond Networks in a Binary System Composed of Primary Ammonium Carboxylates: An Analogue of an Ice Cube. Chem. Eur. J. 13 (15), 4163-4168 (2007).
  23. Sada, K., et al. Well-defined Ion-pair Clusters of Alkyl- and Dialkylammonium Salts of a Sterically-Hindered Carboxylic Acid. Implication for Hydrogen-bonded Lys Salt Bridges. Chem. Lett. 33 (2), 160-161 (2004).
  24. Yuge, T., Hisaki, I., Miyata, M., Tohnai, N. Guest-Induced Topological Polymorphism of Pseudo-Cubic Hydrogen Bond Networks-Robust and Adaptable Supramolecular Synthon. CrystEngComm. 10 (3), 263-266 (2008).
  25. Sasaki, T., et al. Chirality Generation in Supramolecular Clusters: Analogues of Octacoordinated Polyhedrons. Cryst. Growth Des. 15 (2), 658-665 (2015).
  26. Hisaki, I., Sasaki, T., Tohnai, N., Miyata, M. Supramolecular-Tilt-Chirality on Twofold Helical Assemblies. Chem. Eur. J. 18 (33), 10066-10073 (2012).
  27. Sasaki, T., Hisaki, I., Tsuzuki, S., Tohnai, N., Miyata, M. Halogen Bond Effect on Bundling of Hydrogen Bonded 2-Fold Helical Columns. CrystEngComm. 14 (18), 5749-5752 (2012).
  28. Yuge, T., Sakai, T., Kai, N., Hisaki, I., Miyata, M., Tohnai, N. Topological Classification and Supramolecular Chirality of 21-Helical Ladder-Type Hydrogen-Bond Networks Composed of Primary Ammonium Carboxylates: Bundle Control in 21-Helical Assemblies. Chem. Eur. J. 14 (10), 2984-2993 (2008).
  29. Sada, K., et al. Organic Layered Crystals with Adjustable Interlayer Distances of 1-Naphthylmethylammonium n-Alkanoates and Isomerism of Hydrogen-Bond Networks by Steric Dimension. J. Am. Chem. Soc. 126 (6), 1764-1771 (2004).
  30. Tanaka, A., et al. Supramolecular Chirality in Layered Crystals of Achiral Ammonium Salts and Fatty Acids: A Hierarchical Interpretation. Angew. Chem. Int. Ed. 45 (25), 4142-4145 (2006).
  31. Sada, K., et al. Multicomponent Organic Alloys Based on Organic Layered Crystals. Angew. Chem. Int. Ed. 44 (43), 7059-7062 (2005).
  32. Sasaki, T., et al. Characterization of Supramolecular Hidden Chirality of Hydrogen-Bonded Networks by Advanced Graph Set Analysis. Chem. Eur. J. 20 (9), 2478-2487 (2014).
  33. Okamoto, Y., Honda, S., Yashima, E., Yuki, H. Complete Chromatographic Resolution of Tris(acetylacetonato)cobalt(III) and Chromium(III) on an Optically Active Poly(triphenylmethyl methacrylate) Column. Chem. Lett. 12 (8), 1221-1224 (1983).
  34. Nakano, T., Okamoto, Y. Synthetic Helical Polymers: Conformation and Function. Chem. Rev. 101 (12), 4013-4038 (2001).
  35. Chalmers, J. M., Griffiths, P. R. . Handbook of Vibrational Spectroscopy. , (2002).
  36. Griffiths, P. R., Delaseth, J. A. . Fourier Transform Infrared Spectrometry. , (2007).
  37. Stout, G. H., Jensen, L. H. X-Ray Structure Determination: A Practical Guide. Wiley-Interscience. , (1989).
  38. Massa, W., Gould, R. O. . Crystal Structure Determination. , (2004).
  39. Burla, M. C., et al. SIR2004: an Improved Tool for Crystal Structure Determination and Refinement. J. Appl. Cryst. 32 (2), 115-119 (2005).
  40. Sheldrick, G. M. A Short History of SHELX. Acta Cryst. A. 64 (1), 112-122 (2008).
  41. Rigaku. . CrystalStructure 3.8: Crystal Structure Analysis Package. , (2007).
  42. Allen, F. H. The Cambridge Structural Database: A Quarter of a Million Crystal Structures and Rising. Acta Cryst. B: Structural Science. 58 (3), 380-388 (2002).
  43. Bruno, I. J., et al. New Software for Searching the Cambridge Structural Database and Visualising Crystal Structures. Acta Cryst. B: Structural Science. 58 (3), 389-397 (2002).
  44. . Cambridge Strucural Database Access From Available from: https://summary.ccdc.cam.ac.uk/structure-summary-form (2015)
  45. Macrae, C. F. Mercury CSD 2.0 - New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Cryst. 41 (2), 466-470 (2008).
  46. Macrae, C. F. Mercury: Visualization and Analysis of Crystal Structures. J. Appl. Cryst. 39 (3), 453-457 (2006).
  47. Bruno, I. J. New Software for Searching the Cambridge Structural Database and Visualising Crystal Structures. Acta Cryst. B. 58 (3), 389-397 (2002).
  48. Taylor, R., Macrae, C. F. Rules Governing the Crystal Packing of Mono- and Di-alcohols. Acta Cryst. B. 57 (6), 815-827 (2001).
  49. Schrödinger, L. L. C. . The PyMOL Molecular Graphics System, Version 1.7.1.6. , (2015).
  50. Gruenloh, C. J., Carney, J. R., Arrington, C. A., Zwier, T. S., Fredericks, S. Y., Jordan, K. D. Infrared Spectrum of a Molecular Ice Cube: The S4 and D2d Water Octamers in Benzene-(Water)8. Science. 276 (5319), 1678-1681 (1997).
  51. Blanton, W. B., et al. Synthesis and Crystallographic Characterization of an Octameric Water Complex (H2O)8. J. Am. Chem. Soc. 121 (14), 3551-3552 (1999).
  52. Yamamoto, A., et al. Diamondoid Porous Organic Salts toward Applicable Strategy for Construction of Versatile Porous Structures. Cryst. Growth Des. 12 (9), 4600-4606 (2012).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

108

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。