JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

We present a surgical procedure to catheterize the intestinal lymph trunk in neonatal pigs to collect large quantities of lipid metabolism components from efferent lymph.

摘要

Catheterization of the intestinal lymph trunk in neonatal pigs is a technique allowing for the long-term collection of large quantities of intestinal (central) efferent lymph. Importantly, the collection of central lymph from the intestine enables researchers to study both the mechanisms and lipid constitutes associated with lipid metabolism, intestinal inflammation and cancer metastasis, as well as cells involved in immune function and immunosurveillance. A ventral mid-line surgical approach permits excellent surgical exposure to the cranial abdomen and relatively easy access to the intestinal lymph trunk vessel that lies near the pancreas and the right ventral segment of the portal vein underneath the visceral aspect of the right liver lobe. The vessel is meticulously dissected and released from the surrounding fascia and then dilated with sutures allowing for insertion and subsequent securing of the catheter into the vessel. The catheter is exteriorized and approximately 1 L/24 hr of lymph is collected over a 7 day period. While this technique enables the collection of large quantities of central lymph over an extended period of time, the success depends on careful surgical dissection, tissue handling and close attention to proper surgical technique. This is particularly important with surgeries in young animals as the lymph vessels can easily tear, potentially leading to surgical and experimental failure. The video demonstrates an excellent surgical technique for the collection of intestinal lymph.

引言

淋巴系统是生理学的充分研究领域。淋巴导管的临床前模型发生在不同的动物物种1-8和由制药工业和研究机构用于研究参与脂质8-12和药物代谢13-15,与实验治疗17癌转移16的机制,及免疫功能18 -26。本研究旨在探讨在国内猪模型采用肠淋巴导管干线来衡量脂蛋白代谢的成分。脂蛋白代谢参与乳糜微粒的产生和分泌,以及在相关的脂质和总蛋白的变化。这些都是重要的考虑因素,因为有常用的啮齿动物模型与人类之间,因此脂质代谢的主要区别,采用猪模型,收集肠淋巴能为研究脂类我提供更多的可比信息代谢障碍,在人27-31。

若干外科技术用于收集在大动物种属的肠道淋巴:颅骨肩方法( 即,胸导管导尿)5,横向上侧翼的方法32-34,和腹中线或正中的方法22,35。详细这段视频描述了使用的肠淋巴树干导管下腹正中手术方法在猪的外科手术。细心的手术技术许可淋巴导管的这种方法来收集大量淋巴结及其成员在一段时间过长。

该技术将打开的应用程序,许多学科研究的各种生理功能万千。应用可包括,但不限于,全身脂蛋白和脂质代谢,免疫监视,肿瘤发生和转移,肠道功能,并且developm耳鼻喉科和肠道炎症疾病的进展。

研究方案

在视频稿件和描述都实验动物的所有程序被机构动物护理和使用委员会批准,其次是动物保健的加拿大理事会确定的指导方针。

1.手术麻醉及新生儿猪手术准备

  1. 在一个分离的前厅,premedicate颈部与含有肌内镇静麻醉药鸡尾酒底部附近25千克猪:二甲苯胺噻嗪(0.3毫克/千克),盐酸氯胺酮(10毫克/千克),右美托咪(15微克/千克)。
    注:在麻醉前药物鸡尾酒增强术中疼痛控制添加丁丙诺啡(0.005-0.02毫克/千克)。
  2. 麻醉与吸入异氟烷吸入气体的猪(4-5%异氟醚在500毫升千毫升/分钟O 2)使用面罩。使用兽医喉范围(17-25厘米长的直叶片)可视化的声带,并应用外用10%的利多卡因绝育的声音线。允许利多卡因喷30-60秒前联系声带气管插管,以减少声带痉挛及气道阻塞的可能性。
  3. 由声带之间传递铐气管插管(5.0-7.0毫米内径(ID))插管猪并保持与异氟醚气体麻醉(0.5-2.0%异氟醚在1000-2000毫升/分钟O 2)使用关闭电路在整个手术麻醉重复吸入系统。评估麻醉由颚音调水平,并且两个踏板和眼睑反射响应。过期麻醉气体被清理和手术套件之外排出。
  4. 清洁用2.0%氯己定外科擦洗液耳后跟一个70%异丙醇冲洗的外表面。用20G的静脉导管,导尿耳静脉,以提供静脉注射液(乳酸林格氏液; 5-10毫升/千克/小时)的手术过程中。安全脉搏血氧仪与MED舌粘膜表面的iCal胶带监测心脏速率和外周血氧合的饱和度( 血氧饱和度)。
  5. 放置在一个背卧位麻醉猪和剃从中间胸部尾端腹侧腹部到耻骨的腹侧。有两个交替的2.0%洗必泰外科擦洗和消毒水洗清洁这个区域。
  6. 转移猪麻醉到手术套件和应用70%异丙醇冲洗的最终手术擦洗,晾干,然后再披动物。
  7. 插入直肠温度探头大约2-4厘米到直肠监测体温。放置在一个循环水加热垫猪保持在手术过程正常体温(38-40℃)。
  8. 悬垂性与放置在腹部周围的上覆象限模式4毛巾窗帘猪。放置第一个悬垂横跨剑突,第二悬垂沿腹部约5的c外侧面米外侧腹部中线。放置第三悬垂横跨骨盆的回肠波峰和第四悬垂性,像第二悬垂(尽管在相反侧),沿着腹部约5cm外侧到腹部中线的外侧面放置。
  9. 放置一个大表的悬垂性,具有狭缝开口允许进入手术部位,在底层的毛巾窗帘并覆盖猪和整个手术表。最终的褶皱是一次性免缝悬垂放置在大桌子悬垂性。

2.腹部手术和导管肠淋巴干的

  1. 使20cm的皮肤切口,用手术刀刀片以暴露下面的腹部肌肉。切割与单极电灼(20瓦设置)腹部肌肉层以暴露壁层腹膜。打开壁层腹膜的20cm的线段与梅岑鲍姆剪刀进入腹腔脏器和淋巴管。
  2. 将牵开器在手术切口的颅方面保持腹腔开放手术的持续时间。
  3. 滋润所有组织用温水(37℃)的无菌盐水整个手术过程。轻轻抬起一大段小肠包括从腹腔结肠,盲肠,回肠和空肠和它exteriorize到猪的左翼访问上腹部,肝和淋巴管。在固定位置上的外置肠道额外的毛巾窗帘形成吊带轻轻支持肠。
  4. 找到淋巴管,它奠定了约4厘米右肾静脉,腔静脉工头6厘米尾,中间-腹和胰腺22,36,37附近肝右叶内脏方面下的颅内侧。识别淋巴管作为并列门静脉36,37的右侧腹段的半透明结构。
  5. 分离淋巴VESSEL从周围筋膜轻轻挑逗废除棉签涂抹附加的组织。一旦船只的横向方面从周围组织分离,创建容器下方的"隧道"口用细钝尖镊子。
  6. 通过三项2-0丝线缝合用细镊子淋巴管下方。首先结扎最尾缝合闭塞,扩张和淋巴填充容器。目的地离开这个缝合相对长(4厘米)的端部到导管固定到淋巴管。放置另外两个缝线彼此隔开1.0厘米和大约1.0-1.5厘米颅到锁定尾缝合。离开这两个缝线具有"单一松散结扎领带",以允许在导管的更快固定到容器。
    注意:位于最尾端结扎缝线和中间缝合(两个颅缝的)之间的淋巴管的段为导尿站点。关于苏TURE材料,如果需要2-0聚乳糖缝线可替代2-0丝线缝合。
  7. 切一小口与虹膜剪船和扩张细钝钳的容器。用斜切端插入该容器插入约1.0-1.5厘米专门的导管(4.06外径(OD)×2.31毫米ID),和扎两个颅缝以固定导管就位。使用尾缝线的长缝合线端部的导管固定到容器中。
  8. 用大量温生理盐水冲洗外置肠,轻轻将其返回到腹腔,确保肠道正确的解剖定位。
  9. (从paralumbar窝腹侧5-10厘米)Exteriorize导管在左侧中间侧翼。使用手术刀切开皮肤,并从腹腔到皮肤表面传递套针来创建导管的外化的开口。使用大凯利钳从腹部CAV exteriorize导管穿过套管针开放性。
  10. 用2-0聚乳糖缝合圆(锥形)针一个简单的连续缝合模式关闭壁层腹膜。用一个简单的间断缝合模式以2-0聚乳糖缝合关闭上圆针腹部肌肉层。
  11. 用2-0缝合聚乳糖合皮肤的表皮下图案切割针。固定形象化导管与荷包缝合模式皮肤上切割针2-0尼龙缝合。
  12. 将一个专门的夹克猪,同时仍麻醉以减轻其位置,并减少恢复期间猪的压力。

3.手术后的恢复和淋巴收集

  1. 吸入麻醉停产前约10分钟,辖bupenorphine(0.1毫克/千克)肌注提供即时的术后镇痛。继续bupenorphine(0.1毫克/千克),每12小时24〜48小时,以保持手术后镇痛。
  2. 监控猪的手术后并发症7天期每8-12小时。
  3. 收集在500毫升聚丙烯洗瓶淋巴液,涂有乙二胺四乙酸(EDTA)和补充有抗生素;青霉素(6000 IU),链霉素(6毫克)和两性霉素B(3毫克)为7天期间,每12小时。

4.脂蛋白ApoB48,甘油三酯,胆固醇和总蛋白定量从淋巴收集

  1. 离心淋巴样品在1800 XG在4℃下5分钟。收集上清液,并将其用于甘油三酯,胆固醇和总蛋白的定量。
  2. 划分上清液分成三个样品:未稀释的样品,将样品以1:20稀释蒸馏水稀释1的最终样品:100用蒸馏水。
  3. 使用未稀释的上清液来测量胆固醇水平,与市售的试剂盒。
  4. 使用1:20和1:100稀释的样品以测量甘油三酯和总蛋白水平与市售的试剂盒和二辛可宁酸总蛋白分别测定。

5.定量脂蛋白ApoB48,从淋巴收集38

  1. 确定脂蛋白ApoB48的浓度与适于免疫Western印迹方法38。用3-8%三 - 酯 - 十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)分离总淋巴。
  2. 转移分离的蛋白质,以聚偏二氟乙烯膜(0.45微米),用山羊多克隆抗体的ApoB(1:4000)孵育它们,然后将其绑定与抗山羊次级抗体。
  3. 采用量化与啮齿类动物纯化蛋白质ApoB48标准的线性光密度比较脂蛋白ApoB48化学发光。

结果

仔猪肠淋巴干的淋巴导管允许大约1升的中央淋巴/ 24小时收集了7天的时间。在这个实验中收集的淋巴含有脂质代谢,即总淋巴蛋白,ApoB48脂蛋白,甘油三酯,总蛋白,和胆固醇的组分。表1列出代表数量从三头猪汇集淋巴结样品这些脂质成分的。值得注意的是,淋巴流和脂质成分是在符合由下列肠淋巴管的导管等研究者报告中央淋巴的值(淋巴流570±158 979±284毫升/ 24小...

讨论

收集肠淋巴是调查参与脂质8-1213-15的药物代谢,癌症转移16,17,贩卖细胞和免疫功能18-26机制,在各种实验动物模型的好方法。事实上,收获大量任一外围设备(传入)和中央(传出和大型行李箱血管)淋巴的较长时间内的能力一直是特别重要的理解发生在以下与免疫调节剂18-22挑战细胞群随时间的变化,25,26。同样,中央淋巴结收集已划定参与?...

披露声明

The authors have nothing to disclose.

致谢

The work was supported in part by funding from Alberta Livestock and Meat Agency and Natural Science and Research Council Discovery grant to S. D. Proctor.

材料

NameCompanyCatalog NumberComments
Miller laryngoscope bladeWelch Allyn68044182 mm length
Surgivet advisor: Vital signs monitorSurgivetV9203
Rectal temperature probeSurgivetV3417
Mono-polar electrosurgery generatorValley Lab
Metzenbaum scissorsFine Science14518-18
Tuffier retractorStevens162-11-676
Mosquito forcepsStevens162-7-10
Kelly forceps-curved (14cm)Stevens162-7-38
Allis tissue forcepsStevens162-7-38
Forceps dressing-eye (10.2cm)Stevens162-18-780
Forceps dressing-Adison (12.1cm)Stevens162-17-2510
Needle DriversStevens162-V98-42
Iris scissorsFine science14058-11
Circulating water pumpJorvetJ-783X
Maxitherm-Vinyl blanketJorvetJ-784C
Q tip applicatorsFisher Scientific22-037-960
Catheterization  tubing (4.06 OD X 2.31 ID)Braintree Scientific Inc.MRE-160Micro-Renethane implantation tubing
2-0 silk sutureEthiconLA556
2-0 polyglactin sutureEthiconJ443H2-0 vicryl
Large animal jacketLomir Biomedical Inc.SSJ2YC
Polypropylene wash bottlesFisher Scientific03-409-22C500 ml
Penicillin-StreptomycinSigma AldrichD4333
EDTASigma Aldrich60-00-4
Amphotericin BSigma AldrichA2411
AzaperoneElanco Animal HealthStresnil
Dexmedetomidine hydrochlorideZoetis6295Dexdomitor
IsofluraneAbbott Animal  Health05260-5IsoFlo
Ketamine hydrochlorideZoetis2626Ketaset
Bupenorphine hydrochlorideChampion Alstoe Animal HealthDIN:02347510
6 mm Endotracheal tubeJorvetJ-165d
10% Lidocaine sprayAstraZenecaDIN:02003767
4 % Chlorhexidine surgical scrubPartnar Animal HealthPCH-011Diluted: 2.0% solution
3M Surgical steri- drape3M Health Care1040
SDS page gelInvitrogenEA0375BOX3-8 % tris acetate
Polyvinylidene fluoride membraneMilliporeIPVH000100.45 μm pore size
ApoB antibody EMD MilliporeAB7421:4000 dilution
Donkey anti-goat IgG-HRPSanta Cruz BiotechnologySc-2304
ECL Prime Western Blotting ReagentGE Healthcare LifeSciencesRPN2232   
Triglyceride KitWako Pure Chemicals998-40391/994-40491
Total Cholesterol KitWako Pure Chemicals439-17501
Total Protein Pierce 23225Bicinchoninic Acid Assay

参考文献

  1. Lindsay, F. E. F. The cisterna chyli as a source of lymph samples in the cat and dog. Res. Vet. Sci. 17, 256-258 (1974).
  2. Kohan, A. B., Howles, P. N., Tso, P. Methods for studying rodent intestinal lipoprotein production and metabolism. Curr. Protoc. Mouse Biol. 2, 219-230 (2012).
  3. Wang, X. D., et al. Intestinal uptake and lymphatic absorption of beta-carotene in ferrets: a model for human beta-carotene metabolism. Am. J. Physiol. 263 (4 Pt 1), G480-G486 (1992).
  4. Hein, W. R., Barber, T., Cole, S. A., Morrison, L., Pernthaner, A. Long-term collection and characterization of afferent lymph from the ovine small intestine. J.Immunol. Methods. 293 (1-2), 153-168 (2004).
  5. Hartmann, P. E., Lascelles, A. K. The flow and lipid composition of thoracic duct lymph in the grazing cow. J. Physiol. 184 (1), 193-202 (1966).
  6. Redgrave, T. G., Dunne, K. B. Chylomicron formation and composition in unanaesthetised rabbits. Atherosclerosis. 22 (3), 389-400 (1975).
  7. Binns, R. M., Hall, J. G. The paucity of lymphocytes in the lymph of unanaesthetised pigs. Br. J. Exp. Pathol. 47 (3), 275-280 (1966).
  8. Ohlsson, L., Kohan, A. B., Tso, P., Ahren, B. GLP-1 released to the mesenteric lymph duct in mice: Effects of glucose and fat. Regul. Pept. 189, 40-45 (2014).
  9. Ho, H. T., Kim, D. N., Lee, K. T. Intestinal apolipoprotein B-48 synthesis and lymphatic cholesterol transport are lower in swine fed high fat, high cholesterol diet with soy protein than with casein. Atherosclerosis. 77 (1), 15-23 (1989).
  10. Arnold, M., Dai, Y., Tso, P., Langhans, W. Meal-contingent intestinal lymph sampling from awake, unrestrained rats. Am. J. Physiol. Integr. Comp. Physiol. 302 (12), R1365-R1371 (2012).
  11. Nguyen, T. M., Sawyer, J. K., Kelley, K. L., Davis, M. A., Kent, C. R., Rudel, L. L. ACAT2 and ABCG5/G8 are both required for efficient cholesterol absorption in mice: evidence from thoracic lymph duct cannulation. J. Lipid Res. 53 (8), 1598-1609 (2012).
  12. Sato, M., Kawata, Y., Erami, K., Ikeda, I., Imaizumi, K. LXR agonist increases the lymph HDL transport in rats by promoting reciprocally intestinal ABCA1 and apo A-I mRNA levels. Lipids. 43 (2), 125-131 (2008).
  13. Boyd, M., Risovic, V., Jull, P., Choo, E., Wasan, K. M. A stepwise surgical procedure to investigate the lymphatic transport of lipid-based oral drug formulations: Cannulation of the mesenteric and thoracic lymph ducts within the rat. J. Pharmacol. Toxicol. Methods. 49 (2), 115-120 (2004).
  14. Sugawara, T., et al. Intestinal absorption of dietary maize glucosylceramide in lymphatic duct cannulated rats. J. Lipid Res. 51 (7), 1761-1769 (2010).
  15. Shackleford, D. M., et al. Contribution of lymphatically transported testosterone undecanoate to the systemic exposure of testosterone after oral administration of two andriol formulations in conscious lymph duct-cannulated dogs. J. Pharmacol. Exp. Ther. 306 (3), 925-933 (2003).
  16. Lespine, A., et al. Contribution of lymphatic transport to the systemic exposure of orally administered moxidectin in conscious lymph duct-cannulated dogs. Eur. J. Pharm. Sci. 27 (1), 37-43 (2006).
  17. Carr, J., Carr, I., Dreher, B., Betts, K. Lymphatic metastasis: invasion of lymphatic vessels and efflux of tumour cells in the afferent popliteal lymph as seen in the Walker rat carcinoma. J. Pathol. 132 (4), 287-305 (1980).
  18. Bennell, M. A., Husband, A. J. Route of lymphocyte migration in pigs. I. Lymphocyte circulation in gut-associated lymphoid tissue. Immunology. 42 (3), 469-474 (1981).
  19. Knight, J. S., Baird, D. B., Hein, W. R., Pernthaner, A. The gastrointestinal nematode Trichostrongylus colubriformis down-regulates immune gene expression in migratory cells in afferent lymph. BMC Immunol. 11, 51 (2010).
  20. Milling, S. W., Jenkins, C., MacPherson, G. Collection of lymph-borne dendritic cells in the rat. Nat. Protoc. 1 (5), 2263-2270 (2006).
  21. Pernthaner, A., Cole, S. A., Gatehouse, T., Hein, W. R. Phenotypic diversity of antigen-presenting cells in ovine-afferent intestinal lymph. Arch. Med. Res. 33 (4), 405-412 (2002).
  22. Thielke, K. H., Pabst, R., Rothkotter, H. J. Quantification of proliferating lymphocyte subsets appearing in the intestinal lymph and the blood. Clin. Exp. Immunol. 117 (2), 277-284 (1999).
  23. Mayrhofer, G., Fisher, R. IgA-containing plasma cells in the lamina propria of the gut: failure of a thoracic duct fistula to deplete the numbers in rat small intestine. Eur. J. Immunol. 9 (1), 85-91 (1979).
  24. Beh, K. J. The origin of IgA-containing cells in intestinal lymph of sheep. Aust. J. Exp. Biol. Med. Sci. 55 (3), 263-274 (1977).
  25. Bennell, M. A., Husband, A. J. Route of lymphocyte migration in pigs. II. Migration to the intestinal lamina propria of antigen-specific cells generated in response to intestinal immunization in the pig. Immunology. 42 (3), 475-479 (1981).
  26. Rothkotter, H. J., Huber, T., Barman, N. N., Pabst, R. Lymphoid cells in afferent and efferent intestinal lymph: lymphocyte subpopulations and cell migration. Clin. Exp. Immunol. 92 (2), 317-322 (1993).
  27. Vilahur, G., Padro, T., Badimon, L. Atherosclerosis and thrombosis: insights from large animal models. J. Biomed. Biotechnol. 1, (2011).
  28. Getz, G. S., Reardon, C. A. Animal models of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32 (5), 1104-1115 (2012).
  29. Skold, B. H., Getty, R., Ramsey, F. K. Spontaneous atherosclerosis in the arterial system of aging swine. Am. J. Vet. Res. 27 (116), 257-273 (1966).
  30. Reiser, R., Sorrels, M. F., Williams, M. C. Influence of high levels of dietary fats and cholesterol on atherosclerosis and lipid distribution in swine. Circ. Res. 7, 833-846 (1959).
  31. Casani, L., Sanchez-Gomez, S., Vilahur, G., Badimon, L. Pravastatin reduces thrombogenicity by mechanisms beyond plasma cholesterol lowering. Thromb. Haemost. 94 (5), 1035-1041 (2005).
  32. Romosos, D. R., McGilliard, A. D. Preparation of thoracic and intestinal lymph duct shunts in calves. J. Dairy Sci. 53 (9), 1275-1278 (1970).
  33. Shannon, A. D., Lascelles, A. K. The intestinal and hepatic contributions to the flow and composition of thoracic duct lymph in young milk-fed calves. Q.J. Exp. Physiol. Cogn. Med. Sci. 5 (2), 194-205 (1968).
  34. Aliev, A. A. Intestinal lymph of ruminants. I. Operative techniques for collecting intestinal lymph from ruminants. Acta Vet.Hung. 38 (1-2), 105-120 (1990).
  35. Butterfield, A. B., Lumb, W. V., Litwak, P. Surgical preparation of miniature swine for atherosclerosis research. Am. J. Vet. Res. 37 (12), 1519-1523 (1976).
  36. Saar, L. I., Getty, R. Lymphatic system. Sisson and Grossman's: The anatomy of domestic animals. 2, 1343-1358 (1975).
  37. Zanchet, D. J., de Souza Montero, E. F. Pig liver sectorization and segmentation and virtual reality depiction. Acta. Cirurgica. Basilera. 17 (6), 382-387 (2002).
  38. Vine, D. F., Takechi, R., Russell, J. C., Proctor, S. D. Impaired postprandial apolipoprotein-B48 metabolism in the obese, insulin-resistant JCR:LA-cp rat: increased atherogenicity for the metabolic syndrome. Atherosclerosis. 190 (2), 282-290 (2007).
  39. Li, W. C., et al. Biomechanical properties of ascending aorta and pulmonary trunk in pigs and humans. Xenotransplantation. 15 (6), 384-389 (2008).
  40. Arkill, K. P., Moger, J., Winlove, C. P. The structure and mechanical properties of collecting lymphatic vessels: an investigation using multimodal nonlinear microscopy. J. Anat. 216 (5), 547-555 (2010).
  41. Uwiera, R. R. E., et al. Plasmid DNA induces increased lymphocyte trafficking: a specific role for CpG motifs. Cell. Immunol. 214 (2), 155-164 (2001).
  42. Black, D. D., Davidson, N. O. Intestinal apolipoprotein synthesis and secretion in the suckling pig. J. Lipid Res. 30 (2), 207-218 (1989).
  43. Heider, J. G., Pickens, C. E., Lawrence, K. A. Role of acyl CoA:cholesterol acyltransferase in cholesterol absorption and its inhibition by 57-118 in the rabbit. J. Lipid Res. 24, 1127-1134 (1983).
  44. Noh, S. K., Koo, S. I. Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats. J. Nutr. 134, 2611-2616 (2004).
  45. Brunham, L. R., et al. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J. Clin. Invest. 116 (4), 1052-1062 (2006).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

109 ApoB48

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。