JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Deep brain stimulation (DBS) is an effective treatment option for Parkinson's disease. We established a study design to screen novel stimulation paradigms in rats. The protocol describes the use of the staircase test and cylinder test for motor outcome assessment in DBS treated hemiparkinsonian rats.

摘要

底丘脑核的脑深部刺激为帕金森氏病的有效治疗选择。在我们的实验室,我们建立了一个协议,帕金森病(单侧损毁)大鼠筛选不同的神经刺激的模式。它包括通过在电缆结合外部神经刺激的24小时周期结束时注入6-羟基多巴胺(6-OHDA)入右内侧前脑束,植入慢性刺激电极插入底丘脑核和评估马达结果创建单方面帕金森病变。刺激用恒定电流刺激进行。的振幅低于副作用个体阈值为20%。马达结果评估是由气缸测试自发爪子使用的评估根据Shallert和熟练达到在根据蒙托亚楼梯测试评估完成。该协议中详细描述了楼梯框中训练中,Cylinder测试,以及在帕金森病大鼠同时使用的。使用两个测试是必要的,因为在楼梯测试似乎是精细运动技能障碍更敏感并且显示出更高的敏感性神经刺激期间改变。单方面帕金森模型和两个行为测试的组合允许不同的刺激参数的以标准化方式的评估。

引言

底丘脑核(STN)的脑深部刺激为帕金森氏病1和其他运动障碍的有效治疗选择。基本的机制仍然知之甚少和多因素的,但是一个重要特点是神经元网络活动通过在刺激电极2-4的附近轴突重复去极化调制。高频(> 100赫兹)刺激,需要在大多数脑目标和DBS的最适应症的有益效果。从其他纤维,其通过刺激体积覆盖并且其中无意共激活深部脑刺激导致的副作用对...有用不同的功能,例如锥体束。因此,人们希望开发刺激参数,其中优先激活有益神经元素,同时避免副作用元件5,6的共激活。虽然神经生理学可以提供这种精细呕吐DBS的NG选项,科学发展在过去二十年中已经微乎其微,因为编程策略主要是被用在患者的"试错"评估和限用市售DBS设备有限编程选项,而不是使用神经生理学的洞察力并确定实验设置,系统地探索完整的参数空间。

为了克服DBS研究平移路障,我们提出了一个协议,在筛查临床探索之前帕金森的啮齿动物模型替代刺激参数。单方面帕金森氏大鼠疾病用6-羟多巴胺注射仿照到右内侧前脑束7,8。由此产生的病变,进一步描述为帕金森病,低剂量注射阿朴吗啡旋转后成绩评价阿朴吗啡试验进行评估和确认验尸由酪氨酸羟化酶immunohistochemistry。该方法是容易应用和高重现性的,而轴承的低死亡率和发病率。由此产生的运动障碍是非常离散7,8;这些动物都在自发的探索和把握复杂的行为表现出9,10对侧左爪子轻微受损。

评估的脑深部刺激协议测试需要其允许测量电机性能的快速和可靠的变化和可重复随着时间的推移与不同神经刺激的设置的有效性。一些研究小组已经提出了不同的激励方法和不同的测试,以评估在大鼠11高度可变和不一致的结果11-14的运动功能。这迫使我们选择了一套具有高测试预测效度和互补性。此外,对于脑深部刺激条件下,电机结果的评估,测试被看好这可以通过ANI进行MALS通过电缆连接到所述刺激发生器。为了这些目的,我们建立了我们的测试电池由一个测试用爪子不对称和对技术达到一个测试的。研究设计在图1中示出。

自发爪子使用我们执行通过Shallert 15,其是垂直勘探期间爪子使用广泛使用的测试中描述的气缸试验。动物没有训练是必需的。对于更复杂的抓行为的评估,我们根据蒙托亚16建立的楼梯测试。我们的协议是根据Kloth 17修改。将大鼠训练中从测试盒到达粒料一段十二天。训练期间后的试验可以应用于通过计数描述为食用粒料数目的成功率来测量复杂把持行为。本文介绍了在楼梯框中细致的培训,以及两者的性能BEH在天真,帕金森病和脑深部刺激条件avioral测试。

研究方案

动物实验是由维尔茨堡大学和下弗兰肯行政区的法律国家机关按照动物保护准则和欧洲共同体委员会的指导方针(:55.2-2531.01十一分之七十六批准文号)批准。所有作出了努力,尽量减少使用动物的疼痛或不适。

:18别处描述进行植入电极。

1.气缸试验(图2)

  1. 通过用0.1%的醋酸溶液清洗筒准备一个透明的塑料玻璃圆筒(19厘米的高度:40厘米,直径)。
  2. 与试验的日期和各组大鼠的识别号码准备卡。
  3. 将两个镜子的背后汽缸90°角。
  4. 将相机放置在圆筒的前部,使得照相机和气缸之间的距离允许爪子的良好视图。
  5. 放置在运输箱的老鼠。
    注意:动物应通过在测试之前,以避免应力实验者处理。
  6. 从运家笼老鼠使用运输箱筒。
  7. 放置老鼠的气缸( 图3)英寸
    1. 总是在一天的同一时间执行所有行为试验,以避免在活动的昼夜的差别。如果动物连接到由电缆的刺激发生器确保电缆在实验过程中不扭曲。
  8. 按下相机的"记录"按钮。显示用实验和大鼠的识别号码到摄像机的实际日期的卡。开始录制。
  9. 五分钟后,取出从气缸动物,并把它放回使用运输箱的家笼。
  10. 清洁用0.1%乙酸溶液中的圆柱体。
  11. 通过计算左和右爪壁接触(百分比爪子使用),以及为r评估从记录的视频爪使用耳环(上后爪站在有或没有支撑在汽缸壁)。气缸试验也可通过适当的软件自动进行评价。
    注:一个健康的老鼠同时使用爪子一样。帕金森病的老鼠使用的影响,由于病变程度较轻爪子。

2.楼梯测试(图4)

  1. 采集阶段
    1. 训练的前一天熟悉的动物在楼梯测试中使用的颗粒。
      1. 可选:要增加动物的动机使用限制饮食(10-15 g标准的实验室食物的在自由摄食16级的90%,以保持体重)。然而,这不是强制性的,以实现正的训练效果。这项研究是没有食物限制进行。
    2. 制备透明塑料玻璃楼梯盒(高度34.5厘米,长35.5厘米,宽:12厘米和窄室6厘米)由清洁框用0.1%的交流客位酸溶液。注意:楼梯盒是一个两室盒与一个凸起的平台,并在狭窄隔室2楼梯。在狭窄的隔间楼梯左侧步骤只能与左爪到达,仅与右爪的正确步骤。
      注意:标准梯箱包括两个隔室的盖子,如果它是用于实验经由电缆刺激大鼠,使用高盒子无盖。
    3. 拆下楼梯,填补八个45毫克颗粒每一步井。
    4. 将楼梯,并把另外八个小球高涨的平台上。
    5. 放置在运输箱的老鼠。
    6. 从运家笼老鼠使用运输箱楼梯框。
    7. 放置在楼梯框大鼠( 图5)。
    8. 五分钟后,取出从楼梯盒子动物,并把它放回使用运输箱的家笼。
    9. 注多少颗粒从平台和(最终)从右边和左边的楼梯食用。
    10. 通过填写上有八个45毫克颗粒每一步井笔芯的楼梯。
    11. 清洁用0.1%乙酸溶液中的楼梯框并将附加粒料在平台上。
    12. 重复此过程(获取阶段),连续三天。
      注意:所述的对雄性Sprague Dawley大鼠进行所有的实验。不同的培训模块的持续时间可以在不同的应变,性别和厂商的老鼠不同。
  2. 自由选择测试
    1. 清洁用0.1%乙酸溶液中的楼梯框。
    2. 拆下楼梯,填补八个45毫克颗粒每一步井。
    3. 放置在运输箱的老鼠。
    4. 从运家笼老鼠使用运输箱楼梯框。
    5. 放置在楼梯框中的老鼠。
    6. 五分钟后,从楼梯取出动物案例盒,把它放回使用运输箱的家笼。
      注意:有多少小球从右侧和左侧的楼梯食用。
    7. 注意:如果动物仍然有抓小球的问题,增加更多的一些平台,让他们可以很容易达成。
    8. 通过填写上有八个45毫克颗粒每一步井笔芯的楼梯。
    9. 与下一个动物0.1%的醋酸溶液清洗楼梯框。
    10. 重复此过程(自由选择阶段)连续三天。
      注:提供的结果是由无模块之间的休息时间进行训练获得。有些团体喜欢休息日进行整合,以支持训练过程。
  3. 强迫选择测试
    1. 清洁用0.1%乙酸溶液中的楼梯框。
    2. 除去楼梯和具有八个(模块前三天)或四个(连续THR填补左侧楼梯每个步骤的孔模块)45毫克颗粒EE天。
      1. 就在旁边,在那里将发生减值进行强制选择题。
        注意:我们在右半球进行帕金森病变,因此选择培训左爪子。
    3. 放置在运输箱的老鼠。
    4. 从运家笼老鼠使用运输箱楼梯框。
    5. 放置在楼梯框中的老鼠。
    6. 五分钟后,取出从楼梯盒子动物,并把它放回使用运输箱的家笼。
    7. 注意有多少沉淀左楼梯吃掉。
    8. 通过填写上有八个或四个45毫克的颗粒(颗粒的数量取决于训练日)的每一步井笔芯的楼梯。
    9. 与下一个动物0.1%的醋酸溶液清洗楼梯框。
    10. 重复此过程(迫选阶段)连续六天。
  4. 数据采集
      <利>作为用于强迫选择模块(在,每四个小球以及左侧楼梯)连续两天的说明来执行该实验。计算的成功率(吃掉粒料数目),为两天的平均值。

结果

所有动物都进行了多巴胺病变和电极位置的验尸组织学检验。只用在STN内正确的电极放置( 图6)和完整多巴胺病变(>在黑质多巴胺能神经元的90%的损失)动物被纳入结果部分( 图7)。

损伤的条件下进行的圆柱体试验表明,损伤左爪子使用从约50%(天真的,健康的老鼠)减少到15.11%(平均)?...

讨论

本文介绍了气缸和楼梯测试详细的培训方案。后者的目的是评估复杂抓行为和精细运动运动由于大鼠16,17熟练深远。结果测量被表示为试验,这是一种客观测量期间吃掉粒料数目。该协议可以在大鼠模型被用于帕金森病和其它运动疾病模型。气缸测试涉及一个简单的方法来评估大鼠爪子的使用。它无需培训,并且可以在一个高度标准化的方式从录像带被使用,由盲评价。我们选择有几个原...

披露声明

The authors declare that they have no competing financial interests.

致谢

This work was supported by Interdisziplinäres Zentrum für Klinische Forschung (IZKF), University Clinics Würzburg, Germany (project N-215).

材料

NameCompanyCatalog NumberComments
Staircase box without lidGlas Keil, Germanycustom made
Cylinder boxGlas Keil, Germanycustom made
Dustless precision pellets, 45 mgBio ServF0021

参考文献

  1. Fasano, A., Lozano, A. M. Deep brain stimulation for movement disorders: 2015 and beyond. Current opinion in neurology. , (2015).
  2. McIntyre, C. C., Savasta, M., Kerkerian-Le Goff, L., Vitek, J. L. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 115, 1239-1248 (2004).
  3. Deniau, J. M., Degos, B., Bosch, C., Maurice, N. Deep brain stimulation mechanisms: beyond the concept of local functional inhibition. The European journal of neuroscience. 32, 1080-1091 (2010).
  4. Modolo, J., Legros, A., Thomas, A. W., Beuter, A. Model-driven therapeutic treatment of neurological disorders: reshaping brain rhythms with neuromodulation. Interface focus. 1, 61-74 (2011).
  5. Groppa, S., et al. Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor. Brain : a journal of neurology. 137, 109-121 (2014).
  6. Reich, M. M., et al. Short pulse width widens the therapeutic window of subthalamic neurostimulation. Annals of clinical and translational neurology. 2, 427-432 (2015).
  7. Blandini, F., Armentero, M. T., Martignoni, E. The 6-hydroxydopamine model: news from the past. Parkinsonism & related disorders. 14, 124-129 (2008).
  8. Bove, J., Perier, C. Neurotoxin-based models of Parkinson's disease. Neuroscience. 211, 51-76 (2012).
  9. Metz, G. A., Tse, A., Ballermann, M., Smith, L. K., Fouad, K. The unilateral 6-OHDA rat model of Parkinson's disease revisited: an electromyographic and behavioural analysis. The European journal of neuroscience. 22, 735-744 (2005).
  10. Miklyaeva, E. I., Castaneda, E., Whishaw, I. Q. Skilled reaching deficits in unilateral dopamine-depleted rats: impairments in movement and posture and compensatory adjustments. The Journal of neuroscience : the official journal of the Society for Neuroscience. 14, 7148-7158 (1994).
  11. Li, X. H., et al. High-frequency stimulation of the subthalamic nucleus restores neural and behavioral functions during reaction time task in a rat model of Parkinson's disease. Journal of neuroscience research. 88, 1510-1521 (2010).
  12. Darbaky, Y., Forni, C., Amalric, M., Baunez, C. High frequency stimulation of the subthalamic nucleus has beneficial antiparkinsonian effects on motor functions in rats, but less efficiency in a choice reaction time task. The European journal of neuroscience. 18, 951-956 (2003).
  13. Fang, X., Sugiyama, K., Akamine, S., Namba, H. Improvements in motor behavioral tests during deep brain stimulation of the subthalamic nucleus in rats with different degrees of unilateral parkinsonism. Brain research. 1120, 202-210 (2006).
  14. Lindemann, C., Krauss, J. K., Schwabe, K. Deep brain stimulation of the subthalamic nucleus in the 6-hydroxydopamine rat model of Parkinson's disease: effects on sensorimotor gating. Behavioural brain research. 230, 243-250 (2012).
  15. Schallert, T., Fleming, S. M., Leasure, J. L., Tillerson, J. L., Bland, S. T. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology. 39, 777-787 (2000).
  16. Montoya, C. P., Campbell-Hope, L. J., Pemberton, K. D., Dunnett, S. B. The 'staircase test': a measure of independent forelimb reaching and grasping abilities in rats. Journal of neuroscience. 36, 219-228 (1991).
  17. Kloth, V., Klein, A., Loettrich, D., Nikkhah, G. Colour-coded pellets increase the sensitivity of the staircase test to differentiate skilled forelimb performances of control and 6-hydroxydopamine lesioned rats. Brain research bulletin. 70, 68-80 (2006).
  18. Fluri, F., Volkmann, J., Kleinschnitz, C. Microelectrode guided implantation of electrodes into the subthalamic nucleus of rats for long-term deep brain stimulation. JoVE. , (2015).
  19. Paxinos, G., Watson, C. . The rat brain in stereotactic coordinates. , (2008).
  20. Nikkhah, G., Rosenthal, C., Hedrich, H. J., Samii, M. Differences in acquisition and full performance in skilled forelimb use as measured by the 'staircase test' in five rat strains. Behavioural brain research. 92, 85-95 (1998).
  21. Angelov, S. D., Dietrich, C., Krauss, J. K., Schwabe, K. Effect of Deep Brain Stimulation in Rats Selectively Bred for Reduced Prepulse Inhibition. Brain stimulation. , (2014).
  22. de Haas, R., et al. Wireless implantable micro-stimulation device for high frequency bilateral deep brain stimulation in freely moving mice. Journal of neuroscience methods. 209, 113-119 (2012).
  23. Heo, M. S., et al. Fully Implantable Deep Brain Stimulation System with Wireless Power Transmission for Long-term Use in Rodent Models of Parkinson's Disease. Journal of Korean Neurosurgical Society. 57, 152-158 (2015).
  24. Gut, N. K., Winn, P. Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism. J. Neurosci. 35, 4792-4803 (2015).
  25. Whishaw, I. Q., Gorny, B., Foroud, A., Kleim, J. A. Long-Evans and Sprague-Dawley rats have similar skilled reaching success and limb representations in motor cortex but different movements: some cautionary insights into the selection of rat strains for neurobiological motor research. Behavioural brain research. 145, 221-232 (2003).
  26. Honndorf, S., Lindemann, C., Tollner, K., Gernert, M. Female Wistar rats obtained from different breeders vary in anxiety-like behavior and epileptogenesis. Epilepsy research. 94, 26-38 (2011).
  27. Jadavji, N. M., Metz, G. A. Sex differences in skilled movement in response to restraint stress and recovery from stress. Behavioural brain research. 195, 251-259 (2008).
  28. Kucker, S., Tollner, K., Piechotta, M., Gernert, M. Kindling as a model of temporal lobe epilepsy induces bilateral changes in spontaneous striatal activity. Neurobiology of disease. 37, 661-672 (2010).
  29. Smith, L. K., Metz, G. A. Dietary restriction alters fine motor function in rats. Physiology & behavior. 85, 581-592 (2005).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

111 6 OHDA

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。