JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Here, we present a protocol for isolating and culturing single cells with a microfluidic platform, which utilizes a new microwell design concept to allow for high-efficiency single cell isolation and long-term clonal culture.

摘要

Studying the heterogeneity of single cells is crucial for many biological questions, but is technically difficult. Thus, there is a need for a simple, yet high-throughput, method to perform single-cell culture experiments. Here, we report a microfluidic chip-based strategy for high-efficiency single-cell isolation (~77%) and demonstrate its capability of performing long-term single-cell culture (up to 7 d) and cellular heterogeneity analysis using clonogenic assay. These applications were demonstrated with KT98 mouse neural stem cells, and A549 and MDA-MB-435 human cancer cells. High single-cell isolation efficiency and long-term culture capability are achieved by using different sizes of microwells on the top and bottom of the microfluidic channel. The small microwell array is designed for precisely isolating single-cells, and the large microwell array is used for single-cell clonal culture in the microfluidic chip. This microfluidic platform constitutes an attractive approach for single-cell culture applications, due to its flexibility of adjustable cell culture spaces for different culture strategies, without decreasing isolation efficiency.

引言

目前将单个细胞单独在培养空间通常是通过使用有限稀释或荧光激活细胞分选(FACS)来实现的。对于许多实验室,有限稀释是一个方便的方法,因为它仅需要一个吸管和组织培养板中,这是容易获得的。在这种情况下,细胞悬浮液连续稀释至适当的细胞密度,然后通过使用手动移液管放置到培养孔。然后,这些隔间单细胞被用于细胞分析,如遗传异质性筛选1和集落形成2。然而,该方法是低通量和劳动密集的,不利用用于协助一机械臂,因为有限稀释法的泊松分布性质限制了单细胞事件的37%3的最大概率。 FACS机,集成机械臂可以通过准确PLAC克服泊松分布的限制ING在文化井一单细胞在同一时间4。然而,高机械剪切应力(因此,降低细胞活力)5和机购买和操作成本在许多实验室已经限制了它的使用。

为了克服上述限制,微型装置已经发展到高效的单细胞装入微孔6。然而,微孔不提供足够的空间用于装载的细胞增殖,由于需要使每个的尺寸微孔关闭到单个细胞的最大化单细胞加载的概率。作为培养测定在许多基于细胞的应用( 例如,克隆形成实验7),较大微孔需要(从90 - 650微米的直径或边长)也被用于允许延长细胞培养物。然而,像有限稀释法,它们也具有低的单细胞负载效率,范围从10 - 30%的8,9

以前,我们已经开发出一种高通量微流体平台,单个细胞中分离出在个体微孔,并在分离的细胞的克隆形成实验证明其应用10的装置,用聚二甲基硅氧烷(PDMS)制成,并包括两组微孔阵列具有不同微孔尺寸,从而可以大大提高在微孔的大小加载单个细胞的效率是比电池显著大。值得注意的是,这种"双阱"的概念允许在不影响单细胞捕获效率,使得它直接地调整该装置的设计,以适应不同的细胞类型和应用程序灵活调整培养面积的大小。这种高效率的方法应该是对于长期的细胞培养实验对于细胞的异质性的研究和单克隆细胞系建立有用的。

研究方案

注意:我们的微流体装置的制造的光掩模的设计通过使用计算机辅助设计(CAD)软件绘制。然后设计被用于制造使用的是商业服务镀铬光掩膜。 PDMS的设备用软光刻技术制成。11

1.制作母模的通过光刻

  1. 光刻工艺12之前,使用4英寸硅晶片作为基板,并在120℃下脱水在常规烘箱晶片10分钟。
  2. 通过在100瓦特使用氧等离子体处理中的等离子体清洁器30秒清洗脱水硅晶片。
  3. 预热在65℃两个分别电炉和95℃,对下列烘烤过程。
  4. 涂层5克,以通过旋涂机的清洗硅晶片负光致抗蚀剂(PR)的;旋在1,200rpm下(SU-8 50)30秒,以产生微通道层。
  5. 放置PR在65℃涂覆的晶片上的预热加热板上12分钟,并在95℃下转移至另一预热加热板上33分钟(100微米厚的图案),以执行软烘烤过程。
  6. 烘烤后,放置在一个半自动化掩模对准的支架的PR涂覆的硅晶片,并对准一个25400 dpi分辨率透明度光掩模。
  7. 的剂量为500mJ / cm 2的中暴露的PR涂覆的硅晶片到UV光(365纳米)来创建在硅晶片上的PR图案。
  8. 从对准器中取出晶片,并放置在烘烤后在95℃下12分钟的加热板上。
  9. 浸泡在SU-8显影剂(丙二醇单甲醚乙酸酯,PGMEA)溶液晶片以洗掉未交联PR为12分钟,并用氮气轻轻擦干以暴露对准标记。
  10. 再次,涂层5克,以通过旋涂在晶片的负光致抗蚀剂;旋在700rpm(SU-8 100)30秒和1,200rpm下(SU-8 10),用于为300 30秒#181;米厚的格局和27微米厚的图案分别使微孔层。
  11. 放置在电炉上的PR涂覆的晶片在65℃下进行4分钟,并在95℃下8分钟(27微米深捕集阱层);并在65℃40分钟,并在95℃110分钟(300微米深培养阱层)。
  12. 冷却后,放置在装有UV光掩模对准器的PR涂覆的硅晶片。
  13. 剂量250毫焦耳/ 平方厘米(27微米厚的图案)和700兆焦耳/厘米2(300微米厚的图案)暴露PR涂硅片紫外光灯(365纳米)。
  14. 烘烤在95℃下的晶片5分钟,(27微米厚图案)和30分钟(300微米厚图案),分别。
  15. 由PGMEA为分别为6分钟(27微米厚图案)和25分钟(300微米厚图案),洗掉未交联PR,然后用氮气干燥。
  16. 测量高度的图案展示了通过放置在晶片上扫描激光轮廓曲线的在xy阶段用扫描激光表面光度仪晶片。
    1. 调整焦平面清楚地显示了由一20X物镜下使用"相机视图"观察模式在晶片上的图案特征。
    2. 从"摄像机视图"到"激光视图"切换观察模式,以及设置特征的上下位置。
    3. 设定分别测量模式,面积,质量,和z音调高达透明(上),1线(1,024×1),高准确度和0.5微米,然后按下开始底部开始测量。

2.准备PDMS器械的单细胞分离

  1. PDMS铸造之前,silanize主模具与三氯硅烷以创建一个疏水性表面,这使得它更容易从主模具剥离PDMS复制品。
    1. 将主模具和含权舟三氯硅烷的200微升在干燥器,和15分钟,施加真空(-85千帕)。
    2. 停止真空,然后离开主模具在干燥器中silanize在室温下将主模具至少1小时。
    3. 从干燥器中取出主模具和各母模放置在一个10cm培养皿。
  2. 混合含有碱和以10比的固化剂17.6克PDMS聚合物试剂盒的总量:1,然后倒入PDMS上的培养皿的母模。
  3. 放置培养皿在干燥器和1小时施加真空(-85千帕),以除去在PDMS中的气泡。
  4. 从干燥器中取出培养皿并将其放置在常规烘箱中在65℃下3 - 6小时以固化的PDMS。
  5. 从主模中取出固化的PDMS复制品,并通过与内径-0冲床冲两个孔作为入口和出口处的捕集阱阵列的PDMS复制品所述微通道的两端。75毫米;流体通道( 图2A)。
  6. 使用磁带清洁PDMS复制品的表面上,然后将PDMS复制品在短暂氧等离子体处理(100瓦14秒)的等离子体清洁器。
  7. 除去由氧等离子体机器与PDMS复制品。
  8. 对齐的顶(包含捕获微孔)和一个底部PDMS(含有培养微孔)复制品用手在立体显微镜下,并使其接触。
  9. 放置在烘箱对准PDMS复制品在65℃下放置24小时以实现PDMS复制品之间的永久接合,以形成最终器件。
  10. 浸泡PDMS设备在去离子(DI) - 水填充容器,并将该容器在干燥器真空(-85千帕)下15分钟,以从PDMS设备的微通道除去空气。
  11. 放置的DI水填充PDMS设备在组织培养罩,并使用UV光(光的波长:254nm),以30英里消毒装置的ñ。
  12. 在PDMS设备与在1×PBS溶液,5%牛血清白蛋白(BSA)替换DI水,并在37℃下孵育30分钟,以防止细胞粘到PDMS表面。
    注意:BSA涂层是至关重要的,以提高从分离的细胞的转移效率捕获孔到培养孔。
  13. 替换在PDMS设备用无菌1×PBS溶液中的5%BSA溶液。

3.单细胞悬浮液的制备

  1. 培养的神经干细胞KT98和人癌A549细胞和MDA-MB-435,我们在常规细胞培养孵育箱(37℃,5%CO 2和95%湿度)的培养皿来制备细胞用于PDMS设备细胞实验。
  2. 卸下并丢弃废培养基从生长至70细胞培​​养皿(含10%胎牛血清和1%抗生素的供给DMEM基础培养基) - 80%汇合。
  3. 轻轻洗涤细胞用无菌PBS清洗3次。
  4. 卸下并丢弃PBS,加入2毫升蛋白,胶原溶解和DNA酶的活动重组酶混合物(请​​参阅材料清单的详细信息)。
  5. 在室温下孵育培养皿5分钟,然后点击培养皿,以促进细胞脱落。
  6. 添加4毫升灭菌PBS以分散细胞,然后将细胞悬浮液转移到15毫升锥形管中。
  7. 离心管中,在300×g离心3分钟,去除上清。
  8. 轻轻重悬在1ml的灭菌PBS细胞沉淀和计数使用标准台盼蓝排除法13的活细胞数目。
    注意:此悬浮步骤是制备以及解离的单细胞悬浮液,以提高单细胞分离效率是至关重要的。

4.单细胞的分离和克隆培养

  1. 负载50微升细胞悬浮液中的2.2的浓度 - 2.5×10 6个细胞/ ml成经由与手持移液器设备的出口孔与PDMS装置的微通道。
    注意:将细胞悬浮液装载吸管需要停止,并在第一停止位置保持,以避免引入气泡进入微通道。
  2. 通过进口孔加载其他50微升细胞悬液,以均匀地填充了细胞的整个微通道。
  3. 用密封塞(3毫米长,直径1毫米的尼龙切鱼线),以避免流由从入口和出口孔滴静水压力感应出水孔。
    注意:插头是紫外线使用前组织培养罩内灭菌。
  4. 填补了用培养基1毫升无菌注射器,从中弹出气泡,并将其设置在注射器泵。
  5. 经由23政钝针和聚四氟乙烯(PTFE)管道连接介质装载注射器与PDMS装置的入口孔。
  6. 从出线孔,所有拔下插头流2分钟的时间间隔,使细胞沉淀成重力单细胞捕获井。
  7. 洗去未捕获的细胞用300μl培养基以600微升/分钟通过注射器泵驱动的流速。
  8. 等待2分钟,以稳定装置,和密封带插头的入口和出口孔,以形成一个封闭的培养系统。
  9. 手工翻转设备将捕获的单细胞转移到培养微孔。
  10. 放置PDMS设备在100毫米组织培养皿,并在该装置周围添加灭菌的PBS 10毫升,以避免从所述微通道培养基蒸发。
  11. 移动至培养皿的常规细胞培养孵育箱(37℃,5%CO 2和95%湿度)为单细胞的克隆培养。

5.培养基补货

  1. 培养1天后,具有提高细胞PR新鲜培养基替换PDMS设备培养基oliferation。
  2. 放置在邻近所述入口孔和出口孔的区域的PDMS设备的顶部培养基的两个液滴以避免引入气泡进入所述微通道在执行下一个步骤。
  3. 从微通道作为入口的两端附近的PDMS装置的顶部和用于所述微通道的出口冲两个孔。
    注意:不要通过PDMS设备的整个两层冲;相反,仅仅通过与PDMS的顶层打孔。
  4. 通过连接一个23政钝针和PTFE管含有对进口新鲜培养基1毫升的塑料注射器。
  5. 流120微升新鲜培养基到设备5分钟,更换旧培养基。
  6. 插入两个塞子以密封所述入口和出口孔,并且该设备返回到细胞培养孵化器。
  7. 通过除去该密封塞,然后通过重复步骤5.4至5.5刷新培养基中培养的期间每2天。

结果

对于单细胞的分离和培养的微流体平台包括一个微通道(200微米的高度)与两套微孔阵列( 图2A)。两套微孔阵列被称为捕捉阱(25微米直径27微米的深度),并培养良好(285微米直径300微米深度)分别为单细胞分离和培养,每从顶视图( 图2B)观察时捕获阱被定位在培养孔的中心。对于设备操作(概略操作流程在图1中示出),所需?...

讨论

基于微孔的设备系统6,14已用于单细胞操纵和分析,例如大型单细胞俘获6和单造血干细胞增殖15。虽然井大小,数量和形状可以调节为特定的应用中,当孔的大小增加时,单细胞分离效率总是受到损害。9,15

为了克服此限制,Park等人报告了具有高的单细胞的捕集率(58.34%)的三角形的微孔的微流体芯片,而微孔尺寸放大以允许细胞扩散?...

披露声明

The authors declare that they have no competing financial interests.

致谢

This work was supported by a grant from the National Health Research Institutes (03-A1 BNMP11-014).

材料

NameCompanyCatalog NumberComments
AutoCAD softwareAutodeskAutoCAD LT 2011Part No. 057C1-74A111-1001
Silicon wafer Eltech corperationSPE0039
Conventional ovenYEONG-SHIN companyovp45
Plasma cleanerNordsonAP-300Bench-Top Plasma Treatment System
SU-8 50 negative photoresistMicroChemY131269
SU-8 100 negative photoresistMicroChemY131273
Spin coaterSynrex Co., Ltd.SC-HMI 2" ~ 6"
HotplateYOTEC companyYS-300S
Msak alignerDeya Optronic CO.A1K-5-MDA
SU-8 developerGrand Chemical CompaniesGP5002-000000-72GCPropylene glycol monomethyl ether acetate
Scanning laser profilometerKEYENCEVK-X 100
TrichlorosilaneGelest, IncSIT8174.0Tridecafluoro-1,1,2,2-tetrahydrooctyl. Hazardous. Corrosive to the respiratory tract, reacts violently with water.
DesiccatorBel-Art ProductsF42020-0000Space saver vacuum desiccator 190 mm white base
Polydimethylsiloxane (PDMS) kitDow corningSylgard 184
Harris Uni-Core puncherTed Pella Inc.15072with 0.75 mm inner-diameter
Removable tape3M CompanyScotch Removable Tape 811
StereomicroscopeLeica MicrosystemsLeica E24
Bovine serum albumin (BSA)Bersing TechnologyALB001.500
DMEM basal mediumGibco12800-017
Fetal bovine serumThermo HycloneSH30071.03HI
AntibioticsBiowestL0014-100Glutamine-Penicillin-Streptomycin
Recombinant enzyme mixtureInnovative cell technologyAM-105Accumax
DiIC12(3) cell membrane dyeBD Biosciences354218Used as a cell tracker
Syringe pumpHarvard Apparatus703007
Plastic syringe (1 ml)BD Biosciences309659
23 gauge blunt needlesEver Sharp Technology, Inc.TD21
Poly-tetrafluoroethene (PTFE) tubingEver Sharp Technology, Inc.TFT-23Tinner diameter, 0.51 mm; outer diameter, 0.82 mm

参考文献

  1. Meacham, C. E., Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature. 501 (7467), 328-337 (2013).
  2. Vermeulen, L., et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. P Natl Acad Sci USA. 105 (36), 13427-13432 (2008).
  3. Shapiro, H. M. . Practical flow cytometry. , (2005).
  4. Leong, K. G., Wang, B. E., Johnson, L., Gao, W. Q. Generation of a prostate from a single adult stem cell. Nature. 456 (7223), 804-808 (2008).
  5. Shapiro, E., Biezuner, T., Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet. 14 (9), 618-630 (2013).
  6. Rettig, J. R., Folch, A. Large-scale single-cell trapping and imaging using microwell arrays. Anal. Chem. 77 (17), 5628-5634 (2005).
  7. Liu, J., et al. Soft fibrin gels promote selection and growth of tumorigenic cells. Nat Mater. 11 (8), 734-741 (2012).
  8. Charnley, M., Textor, M., Khademhosseini, A., Lutolf, M. P. Integration column: microwell arrays for mammalian cell culture. Integr. Biol. 1 (11-12), 11-12 (2009).
  9. Lindstrom, S., et al. High-density microwell chip for culture and analysis of stem cells. PloS one. 4 (9), e6997 (2009).
  10. Lin, C. H., et al. A microfluidic dual-well device for high-throughput single-cell capture and culture. Lab Chip. 15 (14), 2928-2938 (2015).
  11. Xia, Y. N., Whitesides, G. M. Soft lithography. Angew Chem Int Edit. 37 (5), 550-575 (1998).
  12. Shin, Y., et al. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat Protoc. 7 (7), 1247-1259 (2012).
  13. Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. Appendix 3 (Appendix 3B), (2001).
  14. Lindstrom, S., Andersson-Svahn, H. Miniaturization of biological assays - Overview on microwell devices for single-cell analyses. Bba-Gen Subjects. 1810 (3), 308-316 (2011).
  15. Lecault, V., et al. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat Methods. 8 (7), 581-593 (2011).
  16. Park, J. Y., et al. Single cell trapping in larger microwells capable of supporting cell spreading and proliferation. Microfluid Nanofluid. 8 (2), 263-268 (2010).
  17. Tirino, V., et al. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J. 27 (1), 13-24 (2013).
  18. Chen, P. C., Huang, Y. Y., Juang, J. L. MEMS microwell and microcolumn arrays: novel methods for high-throughput cell-based assays. Lab Chip. 11 (21), 3619-3625 (2011).
  19. Liang, P., et al. Drug Screening Using a Library of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveals Disease-Specific Patterns of Cardiotoxicity. Circulation. 127 (16), 1677-1691 (2013).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

112

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。