需要订阅 JoVE 才能查看此. 登录或开始免费试用。
Method Article
A method to establish an in vitro model of blood-brain barrier based on a co-culture of rat brain microvascular endothelial cells and astrocytes is described and validated. This system proved to be a valid tool to study the effect of nanoformulation on the trans-barrier permeation of fluorescent molecules.
Brain microvascular endothelial cells, supported by pericytes and astrocytes endfeet, are responsible for the low permeation of large hydrosoluble drugs through the blood-brain barrier (BBB), causing difficulties for effective pharmacological therapies. In recent years, different strategies for promoting brain targeting have aimed to improve drug delivery and activity at this site, including innovative nanosystems for drug delivery across the BBB. In this context, an in vitro approach based on a simplified cellular model of the BBB provides a useful tool to investigate the effect of nanoformulations on the trans-BBB permeation of molecules. This study describes the development of a double-layer BBB, consisting of co-cultured commercially available primary rat brain microvascular endothelial cells and astrocytes. A multiparametric approach for the validation of the model, based on the measurement of the transendothelial electrical resistance and the apparent permeability of a high molecular weight dextran, is also described. As proof of concept for the employment of this BBB model to study the effect of different nanoformulations on the translocation of fluorescent molecules across the barrier, we describe the use of fluorescein isothiocyanate (FITC), loaded into ferritin nanoparticles. The ability of ferritins to improve the trans-BBB permeation of FITC was demonstrated by flux measurements and confocal microscopy analyses. The results suggest this is a useful system for validating nanosystems for delivery of drugs across the BBB.
中枢神经系统(CNS)的疾病( 即肿瘤,癫痫症,抑郁症,精神分裂症和HIV相关的神经障碍)耐药物疗法是由于各种不同的机制,包括跨越血脑屏障艰巨药物渗透(BBB) 。血脑屏障是隔离在血液中循环的物质的脑组织的边界。在这个障碍,脑微血管内皮细胞(BMECs),通过周细胞和星形胶质细胞endfeet支持层,是负责对血脑屏障的高选择性的那些水溶性药物的分子量高于400达1。另一个与药物有关的耐药机制被链接到上BMECs存在药物外排转运(P-糖蛋白和多药耐药蛋白),其共同操作以减少药物渗透到中枢神经系统和从大脑2促进其挤出。
在过去十年中,大量的纳米技术的方法已被开发,以满足穿过BBB 3-6递送药物的临床和生物学的挑战。在此背景下,铁蛋白纳米球(FNN)代表一种完全创新的和可行的解决方案。 FNN是24自组装铁蛋白(FN)单体,其被布置在8nm的内径的中空球状结构12纳米球体。铁蛋白亚基可以在酸性pH下被拆卸并通过使pH值至中性,允许被包封各种有机分子中的形状记忆的方式重新组合。因此,FNN代表多功能药物递送系统7,8的发展的一个有趣的模型。此外,FNN可以与BMECs由于转铁蛋白受体(铁蛋白)1,这是对这些细胞9的管腔膜表达的特异性识别相互作用。
到目前为止, 在血脑屏障的体外模型不同已在奥德开发R以阐明反式BBB通透性对各种药物,毒性朝向血脑屏障,或流出转运分子的相互作用。的确,这些模型被认为是体外有效与体内研究在继续之前接近为活性分子的快速筛选。这些模型由BMECs或共培养BMECs和星形胶质细胞(更罕见周细胞)的单个内皮细胞层,从动物(大鼠,小鼠,猪和牛),或人细胞系10,11,12得到的。的跨内皮电阻(TEER),并具有限定分子量示踪剂的表观渗透率(P 应用 )表示用于确定在体外模型的质量的两个关键参数。在这里,我们描述了就业BBB 体外模型的基础上,大鼠BMECs(RBMECs)的共同的文化和大鼠皮层星形胶质细胞(合会)研究纳米笼铁的跨BBB渗透封装荧光isothiocyanate(FITC)。
1.建立血脑屏障模型
注意:对于建立血脑屏障模型,我们建议您使用市售的主RBMECs和RCA接头。所有步骤都必须用无菌的试剂和耗材,在层流罩处理来执行。
2. BBB验证
3.跨BBB FITC加载铁蛋白渗透(FNN)
注:人类铁蛋白的重组变异体(FN),在大肠杆菌中产生并聚集在纳米笼(FNN)针对不同的荧光分子的封装,可提供从Prosperi教授的NanoBioLab(大学米兰比可卡,意大利)。 FNN装载用FITC,根据先前描述的方案13和Fn和加载的分子的浓度准确determin编辑。
在建立血脑屏障模型,细胞附着和生长的插入物可以使用光学显微镜由于在PET膜的透明性进行监测。合会,在35,000个细胞/ cm 2时,有效地连接到所述插入件的底侧之后在RT( 图2A)孵育4小时的密度接种并生长到覆盖膜表面在3天,采取纺锤形的形态( 图2B)。 RBMECs,在60,000个细胞/ cm 2的密度接种,在37℃下( 图2C)明?...
此处描述的体外方法是一项有用的验证方法来研究在nanoformulation与纳米颗粒的荧光分子中的反式血脑屏障输送。在这里,我们使用FNN,它代表一个很好的候选来研究穿过BBB货物分子的易位。 FNN被认为是金nanovector为反式血脑屏障递送药物/剂的,因为它是专门通过TFR1受体,这是在BMECs的管腔膜表达并介导使用受体介导的内化途径中的纳米颗粒的摄取识别。此外,模糊神经网络是一种天?...
The authors declare that they have no competing financial interests.
The authors acknowledge Assessorato alla Sanità, Regione Lombardia and Sacco Hospital (NanoMeDia Project) for research funding.
Name | Company | Catalog Number | Comments |
Rat Brain Microvascular Endothelial Cells | Innoprot | P10308 | isolated from Sprague Dawley rat brain tissue, cryopreserved at passage one and delivered frozen |
Cortical Astrocytes | Innoprot | P10202 | isolated from 2 days rat brain tissue, cryopreserved at passage one and delivered frozen. |
Endothelial Cell Medium kit | Innoprot | P60104 | ECM (500 ml) and fetal bovin serum (25 ml), endothelial cell growth supplement (5 ml) and penicillin/streptomycin (5 ml). Warm in 37 °C water bath before use and protect from light |
Trypsin-EDTA without Phenol Red | EuroClone | ECM0920D | Warm in 37 °C water bath before use |
Fluorescein isothiocyanate-dextran 40,000 | Sigma | FD40S | protect from light |
paraformaldehyde | Sigma | 158127 | diluition in chemical hood |
Dulbecco's phosphate buffer saline w/o Ca and Mg | EuroClone | ECB4004L | |
Triton X-100 | Sigma | T8787 | |
bovine serum albumin | Sigma | A7906 | |
goat serum | EuroClone | ECS0200D | |
mouse monoclonal anti-Von Willebrand Factor | Dako | M0616 | |
AlexaFluor 546-conjugated antibody against mouse IgGs | ThermoFischer Scientific | A-11003 | protect from light |
DAPI (4’ ,6-diamidino-2-phenylindole) | ThermoFischer Scientific | D1306 | protect from light |
ProLong Gold Antifade Mountant | ThermoFischer Scientific | P36934 | |
Poly-L-lysine Hydrobromide | Sigma | P1274 | the same solution can be used several times |
fibronectin from bovine plasma | Sigma | F1141 | the same solution can be used several times |
Polyethylene terephthalate (PET) inserts | Falcon | F3090 | Transparent Polyethylene terephthalate (PET) membranes; surface area: 4.2 cm2; pore size 0.4 µm/surface area |
T75 Primo TC flask | EuroClone | ET7076 | |
T175 Primo TC flask | EuroClone | ET7181 | |
EVOM2 Epithelial Tissue Volt/Ohmmeter | World Precision Instruments Germany | EVOM2 | |
Endohm- 24SNAP cup | World Precision Instruments Germany | ENDOHM-24SNAP | |
Light/fluorescence microscope with camera | Leica Microsystems | DM IL LED Fluo/ ICC50 W Camera Module | inverted microscope for live cells with camera |
Confocal Microscope | Leica Microsystems | TCS SPE | |
Spectrofluorimeter | Jasco | FP-8000 |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。