JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

A protocol for producing a large area of nanopatterned substrate from small nanopatterned molds for study of nanotopographical modulation of cell behavior is presented.

摘要

Substrate nanotopography has been shown to be a potent modulator of cell phenotype and function. To dissect nanotopography modulation of cell behavior, a large area of nanopatterned substrate is desirable so that enough cells can be cultured on the nanotopography for subsequent biochemical and molecular biology analyses. However, current nanofabrication techniques have limitations to generate highly defined nanopatterns over a large area. Herein, we present a method to expand nanopatterned substrates from a small, highly defined nanopattern to a large area using stitch technique. The method combines multiple techniques, involving soft lithography to replicate poly(dimethylsiloxane) (PDMS) molds from a well-defined mold, stitch technique to assemble multiple PDMS molds to a single large mold, and nanoimprinting to generate a master mold on polystyrene (PS) substrates. With the PS master mold, we produce PDMS working substrates and demonstrate nanotopographical modulation of cell spreading. This method provides a simple, affordable yet versatile avenue to generate well-defined nanopatterns over large areas, and is potentially extended to create micro-/nanoscale devices with hybrid components.

引言

A number of recent findings reveal that substrate nanotopography has pronounced influence on cell behavior, from cell adhesion, spreading and migration, to proliferation and differentiation1-6. For instance, a smaller cell size and lower proliferation rate have been observed in cells cultured on deep nanogratings, even leading to apoptosis although the cell alignment, elongation and migration were enhanced, compared with the flat controls2,7-10. Moreover, nanotopography has been shown to facilitate the differentiation of stem cells into certain lineages such as neuron2,11,12, muscle13, and bone3,4. In addition, because of increasing concerns on the toxicity of engineered nanomaterials14,15, there is a need to incorporate nanotopography into physiologically relevant in vitro models for accurate risk assessment of nanomaterials. To fulfil the biochemical and molecular biology analyses, enough cells are needed to be grown on a large area of nanopatterned substrate. However, conventional nanofabrication techniques have limitations to generate highly defined nanopatterns over a large area.

Self-assembly including colloid lithography16 and polymer demixing17 can readily generate large-area nanostructures at low costs. Because self-assembly relies on interactions between the assembling elements such as colloidal particles and macromolecules, and possible interactions between these elements and substrate, it cannot be a stand-alone method of producing nanostructures with precise spatial positioning and arbitrary shapes18. The accompanied high density of defects is also a drawback. Precise spatial control of nanopatterns can be achieved by employing templated self-assembly, which uses top-down lithographic approaches to provide the topographical and/or chemical template to guide the bottom-up assembly of the assembling elements19-21. Alternative nanofabrication techniques such as step-and-flash lithography22 and a roll-to-roll nanoimprinting lithography23 have been developed but have limited use because of their sophisticated process or the requirement of specialized equipment. Nevertheless, a template or a master mold with defined nanoscale patterns is needed for templated or alternative nanofabrication techniques.

Such templates and master molds are conventionally generated by using focused electron, ion, or photon beam lithography. For instance, electron beam lithography (EBL)24 and focused ion beam lithography25 can generate defined patterns with a sub-5 nm resolution. Two-photon lithography has demonstrated a feature size as small as 30 nm26. Although the focused beam lithography techniques enable generation of well-defined nanoscale structures, the capital investment and the time-consuming, costly process restrict their widespread use in academic research27. Therefore, it is highly desirable to develop enabling yet affordable techniques to produce a large area of nanopatterned surfaces with high fidelity.

We have reported a simple, cost-effective stitch technique for generating a large area of nanopatterned surface from a small well-defined mold28. This protocol provides step-by-step procedure from replication of poly(dimethylsiloxane) (PDMS) molds using an EBL-written pattern, to assembly of multiple PDMS molds into a single large mold, to generation of a master mold on polymeric such as polystyrene (PS) substrates, to production of working substrates. With the expanded nanopatterned substrates, we demonstrated nanotopographical modulation of cell spreading.

Access restricted. Please log in or start a trial to view this content.

研究方案

1.从EBL模具硅橡胶模具的复制

  1. 制造硅模具29
    1. 旋涂200μl的聚甲基丙烯酸甲酯(PMMA)以2,500转1分钟1×1 4cm的硅(Si)的基片上的解决方案,以形成薄膜。
    2. 烘烤,在180℃的Si衬底2分钟在PMMA膜。
    3. 通过在300μC/ cm 2的面积的剂量使用聚焦电子束写在PMMA膜中的设计的纳米图案。
    4. 开发开发商PMMA纳米图案为80秒。
    5. 沉积的PMMA纳米图案并在厚度使用电子束蒸发器在10千伏,0.5mA的发射电流和0.5埃/秒的沉积速率的输出电压的50纳米的镍层。
    6. 剥离在20ml卸妆聚甲基丙烯酸甲酯部分在80℃下进行20分钟。
    7. 反应离子刻蚀(RIE)的纳米图案到Si衬底来获得所需的深度的Si模具。
      注意:四面体的混合气体afluoromethane(CF 4),在150瓦400瓦和RIE功率的感应耦合等离子体(ICP)功率/氧(O 2)(90%/ 10%)被用于蚀刻硅衬底,以560纳米的深度。
  2. Silanize思模
    1. 放的玻璃盖玻片和Si模具在100毫米的PS培养皿并在位于通风橱的玻璃干燥器转移它们。
    2. 滴在盖玻片10微升1H,1H,2H,2H-Perfluorooctyltrichlorosilane。
      注意:1H,1H,2H,2H-Perfluorooctyltrichlorosilane可能会导致皮肤腐蚀和严重眼损伤。穿戴合适的个人防护装备(PPE)。
    3. 部分覆盖培养皿。
    4. 保持在真空下的干燥器5小时在通风橱以完成硅模具的硅烷化。
  3. 准备PDMS预聚物
    1. 称取10克PDMS树脂和1.05克固化剂在一次性称量舟。
    2. 用塑料勺子调匀的PDMS预聚物。
    3. 直到观察到澄清的混合物脱气在真空下一个塑料干燥器的PDMS预聚物为约20分钟。
  4. 复制模具硅橡胶
    1. 把硅烷化硅模具在60毫米的培养皿。
    2. 倒在培养皿硅模具中的PDMS预聚物。
    3. 放置在一个塑料干燥器和脱气培养皿约10分钟,直至所有的气泡消失。
    4. 转移培养皿到烤盘并在70℃固化的PDMS预聚物4小时。
    5. 通过仔细用镊子剥离从硅模具的PDMS模具。
      注:PDMS模具可以存储在环境条件下长达一周。固化后,也有在与PDMS模具30的一些未交联的PDMS树脂分子和残留的固化剂。低分子量的分子将逐渐扩散出来,并在表面上的时间累积。这会影响PDMS表面31的地形和机械性能。该DIF融合不是一个星期内显著。

2.拼接PDMS模具投入大,单一的模具

  1. 通过重复步骤1.4准备多个的PDMS模具。
    注:称取同样量的PDMS混合物的每次获得相同厚度的PDMS模具。
  2. 确定的各向异性PDMS纳米图案的取向,如在光学显微镜下nanogratings并标记上的PDMS模具用记号笔的背面。
    注意:这是没有必要来标记各向同性纳米形貌的取向,如纳米支柱。
  3. 在通风橱中清洗用乙醇Si衬底并用压缩空气干燥。
  4. 修剪过用刀片每个PDMS模具的无图案的区域。
    注:对于将被放置在缝合模具的周边的PDMS模具,仅在与他人接触的无图案区应修剪掉。
  5. 将修剪PDMS模具的纳米图案面朝下的所述Si衬底的镜侧然后对齐靠近但不接触周围的模具(多个)其它模具。
  6. 准备PDMS粘合层
    1. 投1克脱气的PDMS预聚物(PDMS树脂和固化剂的比例:10:1.05)在一个干净的载玻片(7.5厘米* 2.5厘米),以形成0.5mm厚层。
    2. 烘烤,在100℃上3-5分钟热板的PDMS层。用针触摸层和确保该层被部分地而不是完全固化。
      注:部分固化的PDMS不能流动像固化PDMS预聚体,但与固化硅橡胶相比,它已被置顶。
  7. 放置在对准的PDMS模具的背侧的PDMS层,并迅速反转此组件,并将其转移到加热板上。
  8. 上使用组件的顶部的金属块,以确保与PDMS粘合层和PDMS模具的背面之间具有良好的接触,并且固化所述PDMS粘合层在100℃下1小时施加压缩力(5千帕)。
    注意:小心地调整金属块的位置,避免组件的倾斜。
  9. 去除金属块和剥离从Si基板的单一的,缝合的PDMS模具。

3. PS基板母模的生成

注意:固定在载玻片上的缝合的PDMS模具可被用来生成对一PS板或PS薄膜,从该工作纳米图案基板可以制造母模。

  1. 产生于PS版母模
    1. 准备一个PS版
      1. 干燥在真空烘箱中在PS粒料在80℃两天。
      2. 在230℃预热的压机。
      3. 组装的铝板,聚四氟乙烯(PTFE)片和铝间隔中从底部顺序到顶部。
      4. 负载3.5克聚苯乙烯粒料于铝垫片具有方形开口3厘米(长)×3厘米(宽)×0.3厘米(高)。
        注:该间隔是约0。1厘米比PDMS模具厚,并因此最终纳米图案的PS基底为约0.1厘米厚。
      5. 广场上的铝间隔另一四氟板,然后又铝板。
      6. 将组件压机。
      7. 预热,在230℃下的PS粒料30分钟。
      8. 应用在组件的压缩压力(0.1MPa)下5分钟。
      9. 释放压力,然后重新应用0.5兆帕上装配一个压缩的压力。
      10. 重复步骤3.1.1.9 0.5兆帕的压力增加,直到1.5兆帕的所需压力为止。
      11. 关闭压机的加热器,并在1.5MPa的压力恒定冷却下来低于70℃。
      12. 取组件出并在真空烘箱中在PS板存储于80℃,以防止重新进入PS板水分。
    2. 纳米压印缝合PDMS模具放入PS版
      1. 放置PS版的铝垫片一个3英寸的硅晶片上设置的。
        注:隔板的内部尺寸是相同的PS版,使PS版适合直接在间隔物。
      2. 加热上,在250℃的加热板上30分钟的PS板。
      3. 把缝合PDMS模具上的熔融PS版纳米图案面朝下。
        注意:与PDMS模具的一侧放置在触摸与PS板的表面的第一和另一侧中与PS表面接触逐渐降低,以避免气泡的界面处形成。
        注意:烤盘表面是热的。在纳米压印过程中佩戴thermogloves。
      4. 将铝板上缝合PDMS模具的搏命。
      5. 通过使用该铝板金属板施加压缩压力(12.5千帕),并等待3分钟。
        注:确保铝板没有倾斜。
      6. 提起并从该铝板代替金属块和我现象越来越多压压到25千帕。
      7. 重复步骤3.1.2.6与压力提高到50千帕。
        注意:此步骤是除去捕集的PDMS模具和PS板之间的空气。
      8. 保持50千帕的15分钟的稳定的压力下240和250℃之间的加热板的温度。
      9. 关闭电磁炉和冷却整个安装。
        注:风扇可以用来加速冷却过程。
      10. 除去金属板的温度低于50℃后,小心地剥离从PS板缝合的PDMS模具。
        注:PS衬底具有反向纳米图案和可以用作一个母模制作工作的PDMS衬底。
  2. 生成一个PS薄膜的母模
    1. 准备PS薄膜
      1. 溶解在10ml甲苯1克PS在通风橱中。
        注意:甲苯可引起皮肤irritation和严重眼损伤,并可能导致长期或反复接触器官造成伤害。穿戴合适的个人防护装备。
      2. 在2500转1分钟上的2合晶片旋涂1毫升PS溶液,以形成约1微米厚的聚苯乙烯薄膜。
      3. 通过在通风橱中3天设置硅晶片上的聚苯乙烯薄膜蒸发从膜甲苯。
      4. 在80℃退火在真空烘箱中在PS薄膜过夜。
    2. 纳米压印在PS薄膜的PDMS模具
      1. 把缝合的PDMS模具与PS上的薄膜,它是在电炉上设置纳米形貌面朝下。
      2. 通过使用上的PDMS模具的玻璃侧金属板施加12千帕的PDMS模具的压缩压力。
      3. 提高热板的温度升高到180℃,并保持它为15分钟。
        注意:熔融聚苯乙烯薄膜可以作为润滑剂的作用。要注意防止金属块滑落。
      4. 关闭烤盘和冷却整个安装。
        注:风扇可以用来加速冷却过程。
      5. 除去金属板的温度降至50℃以下之后,并小心地剥离从PS膜缝合的PDMS模具。
        注:该纳米图案化的聚苯乙烯薄膜将作为母模生产工作PDMS基板。

4.细胞行为Nanotopographical调制

注意:人的上皮细胞是培养的代表nanotopographies展示的细胞扩散nanotopographical调制。

  1. 从任一步骤3.1或3.2取决于应用程序生成的母模铸造PDMS基板工作。
  2. 使用中空钢拱冲床,剪奈米PDMS基板刻录到光盘上,以适应特定的多孔板( 例如 ,24孔板)的配置。
  3. 用镊子将PDMS光盘放入井中Ø发多孔板。
  4. 通过使用70%的乙醇中,然后UV曝光,每次30分钟进行消毒的PDMS衬底。
  5. 洗用1×无菌磷酸盐缓冲盐水(PBS)的三倍的PDMS衬底。
  6. 涂层与细胞外基质蛋白( ,20微克/毫升纤连蛋白)在室温下30分钟的PDMS衬底。
  7. 冲洗的PDMS衬底用无菌PBS清洗3次,每次5分钟。
  8. 暂停人肺癌细胞A549中的Dulbecco用10%胎牛血清改良Eagle培养基和使用血球计数细胞。
  9. 板以2,000个细胞/ cm 2的对PDMS衬底并进行培养的接种密度将细胞于37℃在含有5%CO 2的一天的潮湿气氛中。
  10. 洗细胞用PBS洗3次。
  11. 固定细胞在PBS中的4%多聚甲醛和2%戊二醛的混合物4小时,使用CO 2临界婆脱水细胞INT机扫描电子显微镜观察29。
    注意:多聚甲醛和戊二醛可能引起严重的皮肤灼伤和眼睛损伤。工作在化学罩和穿戴适当的个人防护装备。

Access restricted. Please log in or start a trial to view this content.

结果

线圈技术可以产生具有高保真纳米图案基板的大面积。 图1a1b分别显示从缝合的PDMS模具PS板和PS薄膜的Si衬底上转移,纳米图案的大的面积。原始EBL写入模具( 图1c)和工作基板( 图1d)的最终的PDMS之间的比较证实,EBL写纳米图案可以忠实地转印到工作衬底。各种几何形状和尺寸的纳米形貌可以用于调节细胞行为。?...

Access restricted. Please log in or start a trial to view this content.

讨论

我们提出了一个简单,经济实惠,还没有通用的方法来生成纳米图案化衬底的大面积。要忠实地扩大高度定义的纳米图案,极具应注意的几个关键步骤。第一个是修剪多个PDMS模具。与PDMS模具的无图案的区域需要被去除。此外,模具的侧壁应切垂直地尽可能完美以最小化模具之间的间隙。总的来说,未图案化的区域中的最后一针模的部分可以减小。其次,需要没有在硅衬底上的任何扭曲对齐这些PD...

Access restricted. Please log in or start a trial to view this content.

披露声明

The authors have nothing to disclose.

致谢

This work was partly supported by NSF CBET 1227766, NSF CBET 1511759, and Byars-Tarnay Endowment. We gratefully acknowledge use of the West Virginia University Shared Research Facilities which are supported, in part, by NSF EPS-1003907.

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
JEOL field emission SEMJEOLJSM-7600FEBL
E-beam evaporatorKurt J. LeskerModel: LAB 18 e-beam evaporatornickel deposition
Trion Minilock III ICP/RIETrion technologyModel: Minilock-phantom III
Press machinePHI Hydraulic PressMolde: SQ-230H
Spin coaterLaurell TechnologiesModle: WS-400A-6NPP-LITE
CO2 critical dryerTousimisModle: Autosamdri-815
Silicon waferUniversity Wafer1080
Aluminum platesMcMaster-carr9057K123
Teflon sheetsMcMaster-carr8711K92
100 mm Petri dishFALCON353003
60 mm Petri dishFALCON353004
Glass coverslipFisher Scientific12-542-B
Glass slideFisher Scientific12-550-34
Disposable weighing boatsFisher Scientific13-735-743
Glass desiccatorFisher Scientific02-913-360
Plastic desiccatorBel-Art ProductsF42025-000
HotplateFisher Scientific1110049SH
TweezerTed Pella, inc.5726
BladeFisher ScientificS17302
Metal blocksMcMaster-carr
PunchBrettuns Village Leather Craft SuppliesArch punch
Poly(methyl methacrylate)MicroChem495 PMMA A4
PDMSDow CorningSylgard 184 kit
PolystyreneDow ChemicalStyron 685D
1H,1H,2H,2H-perfluorooctylmethyldichlorosilaneOakwood Chemical7142
DeveloperMicroChemMIBK/IPA at 1: 3 ratio
RemoverMicroChemRemover PG
EthanolFisher ScientificBP2818500
TolueneFisher ScientificT324-500
Phosphate buffered salineSigma AldrichD8537
Dulbecco’s modified eagle mediumSigma AldrichD5796
Fetal bovine serumAtlanta BiologicalsS11550
ParaformaldehydeElectron Microsopy Science15712-S
Glutaraldehyde Fisher ChemicalG151-1
FibronectinCorning356008
A549 cellsATCCATCC CCL-185

参考文献

  1. Silva, G. A., et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science. 303 (5662), 1352-1355 (2004).
  2. Yim, E. K. F., Pang, S. W., Leong, K. W. Synthetic Nanostructures Inducing Differentiation of Human Mesenchymal Stem Cells into Neuronal Lineage. Exp. Cell Res. 313 (9), 1820-1829 (2007).
  3. Dalby, M. J., et al. The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry and Disorder. Nat. Mater. 6 (12), 997-1003 (2007).
  4. Oh, S., et al. Stem Cell Fate Dictated Solely by Altered Nanotube Dimension. Proc. Natl. Acad. Sci. U. S. A. 106 (7), 2130-2135 (2009).
  5. Brunetti, V., et al. Neurons Sense Nanoscale Roughness with Nanometer Sensitivity. Proc. Natl. Acad. Sci. U. S. A. 107 (14), 6264-6269 (2010).
  6. McMurray, R., et al. Nanoscale Surfaces for the Long-term Maintenance of Mesenchymal Stem Cell Phenotype and Multipotency. Nat. Mater. 10 (8), 637-644 (2011).
  7. Yim, E. K. F., et al. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials. 26 (26), 5405-5413 (2005).
  8. Gerecht, S., et al. The Effect of Actin Disrupting Agents on Contact Guidance of Human Embryonic Stem Cells. Biomaterials. 28 (28), 4068-4077 (2007).
  9. Bettinger, C. J., Zhang, Z., Gerecht, S., Borenstein, J. T., Langer, R. Enhancement of in vitro Capillary Tube Formation by Substrate Nanotopography. Adv. Mater. 20 (1), 99-103 (2008).
  10. Thakar, R. G., Ho, F., Huang, N. F., Liepmann, D., Li, S. Regulation of vascular smooth muscle cells by micropatterning. Biochem. Biophys. Res. Commun. 307 (4), 883-890 (2003).
  11. Lee, M. R., et al. Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials. 31 (15), 4360-4366 (2010).
  12. Moe, A. A. K., et al. Microarray with micro- and nano-topographies enables identification of the optimal topography for directing the differentiation of primary murine neural progenitor cells. Small. 8 (19), 3050-3061 (2012).
  13. Dang, J. M., Leong, K. W. Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv. Mater. 19 (19), 2775-2779 (2007).
  14. Dasgupta, N., et al. Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ. Sci. Pollut. Res. 23 (5), 4149-4163 (2016).
  15. Ranjan, S., et al. Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Environ. Sci. Pollut. Res. 23 (12), 12287-12302 (2016).
  16. Deckman, H. W., Dunsmuir, J. H. Natural lithography. Appl. Phys. Lett. 41 (4), 377-379 (1982).
  17. Dalby, M. J., Riehle, M. O., Johnstone, H., Affrossman, S., Curtis, A. S. G. In vitro Reaction of Endothelial Cells to Polymer Demixed Nanotopography. Biomaterials. 23 (14), 2945-2954 (2002).
  18. Gates, B. D., et al. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105 (4), 1171-1196 (2005).
  19. Yin, Y., Lu, Y., Gates, B., Xia, Y. Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures. J. Am. Chem. Soc. 123 (36), 8718-8729 (2001).
  20. Tada, Y., et al. Directed Self-Assembly of Diblock Copolymer Thin Films on Chemically-Patterned Substrates for Defect-Free Nano-Patterning. Macromolecules. 41 (23), 9267-9276 (2008).
  21. Cheng, J. Y., Rettner, C. T., Sanders, D. P., Kim, H. C., Hinsberg, W. D. Dense self-assembly on sparse chemical patterns: rectifying and multiplying lithographic patterns using block copolymers. Adv. Mater. 20 (16), 3155-3158 (2008).
  22. Colburn, M., et al. Step and flash imprint lithography: a new approach to high-resolution patterning. Proc. SPIE. 3676 ((Pt. 1, Emerging Lithographic Technologies III)), 379-389 (1999).
  23. Ahn, S. H., Guo, L. J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20 (11), 2044-2049 (2008).
  24. Vieu, C., et al. Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164, 111-117 (2000).
  25. Nagase, T., Gamo, K., Kubota, T., Mashiko, S. Direct fabrication of nano-gap electrodes by focused ion beam etching. Thin Solid Films. 499 (1-2), 279-284 (2006).
  26. Juodkazis, S., et al. Two-photon lithography of nanorods in SU-8 photoresist. Nanotechnology. 16 (6), 846(2005).
  27. Yang, Y., Leong, K. W. Nanoscale surfacing for regenerative medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2 (5), 478-495 (2010).
  28. Yang, Y., Kulangara, K., Sia, J., Wang, L., Leong, K. W. Engineering of a Microfluidic Cell Culture Platform Embedded with Nanoscale Features. Lab Chip. 11 (9), 1638-1646 (2011).
  29. Wang, K., et al. Nanotopographical modulation of cell function through nuclear deformation. Acs Appl. Mater. Inter. 8 (8), 5082-5092 (2016).
  30. Lee, J. N., Park, C., Whitesides, G. M. Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices. Anal. Chem. 75 (23), 6544-6554 (2003).
  31. Yang, Y., Kulangara, K., Lam, R. T. S., Dharmawan, R., Leong, K. W. Effects of Topographical and Mechanical Property Alterations Induced by Oxygen Plasma Modification on Stem Cell Behavior. ACS Nano. 6 (10), 8591-8598 (2012).
  32. Hua, F., et al. Polymer Imprint Lithography with Molecular-Scale Resolution. Nano Lett. 4 (12), 2467-2471 (2004).
  33. Delamarche, E., Schmid, H., Michel, B., Biebuyck, H. Stability of molded polydimethylsiloxane microstructures. Adv. Mater. 9 (9), 741-746 (1997).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

118

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。