JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

鹿族群间的表型差异可能涉及人口水平遗传学或营养;雪亮的很难在野外。此协议说明我们如何设计消除营养成分变化了对照的研究。我们发现,雄性白尾鹿的表型变异更受到限制营养比遗传学。

摘要

鹿表型可以放入两个类别之一: 效率,促进生存在奢侈的形态生长和促进增长的大型武器装备和身体大小的奢侈品。同一物种的种群显示每个表型取决于环境条件。虽然鹿茸和身体大小的雄性白尾鹿 (Odocoileus 鹑) 因在密西西比州,美国的地理区域而异,与营养品质的区域变化密切相关,不能无视人口水平遗传学从本机股票和以前重新进货努力的影响。此协议说明我们如何设计在哪里控制影响表型,如年龄和营养,其他因素的对照的研究。我们从三个明显的地理区域,在密西西比州,美国密西西比州大学生锈道金斯纪念鹿单位到带野外捕捉的怀孕雌兽和六个月岁幼鹿。鹿从同一区域是被培养来生产一二代的后代,使我们能够评估代反应及孕产妇的影响。所有的鹿吃了相同的高质量 (20%粗蛋白鹿丸) 饮食随意。我们唯一标记每个新生儿,并记录身体质量,后腿脚和身体总长度。每个后续的秋天,我们个人通过远程注射镇静剂和采样的同一补益,加上成年人的鹿角。我们发现所有合肥工业大学都增加的大小从第一到二代,与全额赔偿的鹿茸大小 (区域变化不再存在) 和体重 (区域变化一些证据) 明显在二代的部分补偿。二代源于我们贫穷的质量的男性土壤区域显示有关鹿茸大小增加了 40%和体重时与他们野生的收获相比增加了 25%。我们的结果表明,表型变异的野生雄性白尾鹿在密西西比州更涉及营养质量的差异,比人口水平遗传学。

引言

一位母亲在妊娠期和哺乳经验的环境因素可能会影响她的后代的表型,基因型123的独立。母亲居住高质量环境可能会产生的后代表现出豪华表型 (大鹿角和身体大小4),而母亲居住在低质量环境可能产生的后代表现出效率 (小鹿角和身体大小4) 表型。因此,坚持高质量的环境可能让母亲产下的后代以大的表型特征,可能直接影响到后代的生殖机会5678和间接影响母亲的包容性健身。

虽然营养直接影响表型特征跨分类群 (美洲黑熊9;Liasis fuscusI10;黑 michahellis11),几个因素可能会影响白尾鹿表型在密西西比州,美国。鹿茸和体型都大为一些人口约三分之一的人比较12。这种变化强烈关联与牧草质量1314;最大的男性发现在区域与最优质的饲料。然而,白尾鹿在密西西比州的历史恢复努力可能导致遗传瓶颈和 (或) 创始人影响1516,这也部分解释一些中白尾鹿表型观察区域的变化。

我们提供我们用来控制营养品质的野生白尾鹿,使我们能够评估是否男性表型受人口水平遗传学的协议。此协议还允许我们评估是否落后母体效应在我们人口在场。我们控制的设计是优惠到土著居民免费测距仅限于为营养限制317作为代理使用环境变量进行研究。我们控制的设计还允许其他变量如潜力慢性压力有关社会的相互作用,如所有个人都遭受相似的住房和畜牧业做法保持恒定不变。此外,因为营养直接影响其他生活史方面从繁殖到生存1819,控制营养允许调查人员评估影响哺乳动物生活史方面的其他变量。介绍了类似的协议,以评估 (例如2021) 在北美与其他有蹄类动物的生活史方面有关的问题。

研究方案

Ethics Statement: The Mississippi State University Institutional Animal Care and Use Committee approved all capture, handling, and marking techniques under protocols 04-068, 07-036, 10-033 and 13-034.

1. Establish Capture Sites, Immobilize and Transport wild White-tailed Deer

  1. Identify public and private properties that are enrolled in the Deer Management Assistance Program22 and establish ≥29 capture sites throughout three source regions in Mississippi, USA.
    1. Identify several capture locations within each source region to ensure that the range of genetic variation present in the regional population is captured.
    2. Note: Here, source regions included the Delta, which comprises almost 17% of total land area in Mississippi, USA, and is considered a high-quality soil region with agriculture as the primary land use23,24. All study animals were captured from this region within the distribution of O. v. virginianus25. Other regions included the Thin Loess region (upper and lower Thin Loess combined), which comprises almost 14% of total land area in Mississippi, USA and is considered a medium quality soil region. Agriculture is also a primary land use in the Thin Loess region, though not as prevalent as in the Delta23,24. All study animals were captured from this region within the distribution of O. v. virginianus21. Lastly, the Lower Coastal Plain (LCP) soil region comprises nearly 22% of Mississippi and is classified as a low quality soil region. Primary land uses in the LCP are pine timber production and livestock grazing23,24. The LCP also overlaps the geographical distribution of O. v. osceola; four of the six source populations were within 21 km of this distribution25. This subspecies was described as smaller than O. v. virginianus26.

figure-protocol-2231
Figure 1: Source Populations. Physiographic regions where pregnant dams and fawns were caught in Mississippi, USA. This figure has been modified from reference31. Please click here to view a larger version of this figure.

  1. Select potential capture sites that meet the following criteria; habitat characteristics conducive to deer movement, proximity to roads for access, and distribution across the study area.
    NOTE: Capture sites must allow for concealment of the capture technician.
    1. Bait sites with about 10 kg of shelled corn to entice deer to visit and evaluate use based on bait consumption and deer photographed by motion-sensitive cameras. Relocate to alternate sites if deer do not attend baited sites within 5-7 days.
  2. During capture events, sit in a concealed "stand."
    1. Place stand about 20 m downwind from the bait pile, taking the prevailing wind direction into consideration so that deer approaching the bait are less able to smell the capture technician.
      NOTE: Elevated stands are strongly preferred, and safety harnesses are required. There are several variations of stands with a variety of commercial sources and use varies by personal preference. For example, a lock-on stand would include seating with a ladder for access attached to a tree with straps. Portable climbing stands can be carried in by the capture technician and allow for increased mobility as the technician can choose a specific tree once they arrive at the capture site. Portable climbing stands are limited to use in straight trees without branches up the chosen height.
  3. Use a dart gun coupled with a 3 cc radio-telemetry dart to deliver a mixture of teletamine HCl (4.4 mg/kg) and xylazine HCl (2.2 mg/kg).
    1. Schedule capture efforts to coincide with the typical crepuscular activity cycle of deer27. Begin each capture attempt 2-3 h prior to sunset.
    2. Continue capture events for 2-3 h after sunset using night-vision goggles and a red dot laser for shot placement if deer are not captured during daylight hours.
    3. Take shots at deer when they are broadside and stationary.
      NOTE: The hind quarter of the deer is the target because it has significant muscle tissue and is located away from the heart and lungs.
    4. Wait about 15 min for darted target animals (six-month-old fawns of either sex or pregnant adult females) to become fully immobilized before locating it with directional radio-telemetry equipment.
    5. Confirm individuals are sedated by checking for eye reflexes (blinking). Then apply ophthalmic ointment to the eyes and blindfold deer to reduce stress.
      NOTE: Loss of thermoregulation is a consequence of immobilization.
    6. Use a rectal thermometer to assess body temperature after recovery. Warm deer with heated blankets if the animal's temperature is below 37.7 °C. Cool deer with ice packs if the animal's temperature is above 40.0 °C.
    7. Place deer in a sternal position on a military style gurney and transport deer from the capture location to an enclosed trailer.
    8. After placing the deer into the trailer, reverse the effects of xylazine HCl with 0.125 mg/kg yohimbine HCl28.
    9. Transport all captured deer to the desired captive facility (e.g., Mississippi State University Rusty Dawkins Memorial Deer Unit; MSU Deer Unit) and keep them separated by source region.

2. Captive Facilities and General Husbandry Practices of Research Animals

NOTE: The MSU Deer Unit is subdivided into five 0.4 to 0.8 ha pens.

  1. Cover every side of each pen with shade cloth to act as a visual and physical barrier between pens. Shade cloth helps reduce injuries and provides shade during summer months.
  2. Place 1-2 elevated box blinds at one end of each pen to facilitate darting events during data collection.
  3. Place two trough style feeders at separate ends of each pen to reduce competition for food among deer. Also provide a water trough in each pen.
  4. Provide deer with a high-quality diet (20% crude protein deer pellets) ad libitum.
    NOTE: Here, additional available forages within pens included (Trifolium spp) and fescue (Festuca spp) along with volunteer grasses and forbs.
  5. If present, maintain available forages within pens using a mixture of herbicides to control broadleaf weeds and grasses using mixture rates found on respective labels.
    NOTE: Using off-campus facilities to house ≥5.5 month old males will likely be needed. These facilities consisted of two 0.7 ha pens on each of three properties with husbandry practices similar to the MSU Deer Unit.

figure-protocol-7455
Figure 2: Captive Facility Locations. Study area where satellite facilities and the Mississippi State University (MSU) Deer Unit were located. Shaded areas indicate Oktibbeha (A), Noxubee (B), Attala (C), Scott (D), and Copiah (E), counties, Mississippi, USA.This figure has been modified from reference34. Please click here to view a larger version of this figure.

3. Parasite and Disease Control

  1. Monitor research animals for roundworm parasites (Strongyloides spp) using fecal floatation with parasites measured as eggs per gram (EPG).
    1. If present at high levels, provide parasite control by administering a pelleted wormer (active ingredient fenbendazole) at a rate of about 0.77 kg of pelleted wormer per 22.7 kg of feed during the month of May.
    2. If parasite levels remain high after initial treatment, use an ivermectin pour-on treatment (5 mg/mL)29, mixed at a rate of 2 mL/0.45 kg and administer to animals at a rate of 0.45 kg of treated feed per 45.4 kg of animal mass.
      NOTE: Epizootic hemorrhagic disease is sometimes lethal viral disease spread by a biting midge (Culicoides spp) during summer and fall months. If present, treat the research facility with insecticide (5% ultra-low volume insecticide) 2-3 times per week from July 1 to October 1 to decrease prevalence of the vectors among research animals. Spray this insecticide within each pen and around the perimeter of the facility about 90 min before official sunset via fogger. Preferred methods to control for parasites and diseases are unique to each captive facility. Veterinarians must be consulted during any captive wildlife research to ensure animal health and safety.

4. Data Collection

figure-protocol-9661
Figure 3: Data Collection of Newborn Fawns. Measuring hind foot length from a new born fawn at the Mississippi State University Rusty Dawkins Memorial Deer Unit in Oktibbeha County, Mississippi, USA. Please click here to view a larger version of this figure.

  1. Search the captive facility daily for fawns during the parturition season.
    1. Uniquely mark newborn fawns with medium plastic ear tags using an ear tagger with antibiotic applied to the male end of the tag to prevent potential infection. Place ear tag about the center of the fawn's ear.
    2. Measure body mass (nearest 0.01 kg) with a digital hanging scale and measure hind foot length and total body length (nearest mm).
    3. Collect hair samples and send them to a remote site for parentage assignment (see the Table of Materials).
      NOTE: Parentage assignment was made using DNA based on a proprietary, non-statistical custom structured query language database. In the pairwise allele comparison, the remote parentage assignment site assigned parentage when they excluded all but one sire and one dam based upon a shared allele from each parent at all loci tested (B. G. Cassidy, personal communication). This method of parentage assignment was also used in previous research conducted on captive white-tailed deer30,31.
    4. Administer 2 cc of Clostridium perfringens types C and D toxoid and Clostridium perfringens types C and D antitoxin subcutaneously and administer 0.3 cc/kg of ivermectin in propylene glycol (Mississippi State University Veterinarian School, Mississippi, USA) orally to each fawn.
  2. Chemically immobilize adult males (≥1.5 years-old) during October and November for data collection.
    1. Immobilize penned adults using the same combination of teletamine HCl and xylazine HCl used for capture of wild animals (step 1.4).
    2. During sedation events, walk the technician who will be darting to the end of the pen where the elevated blinds are located. Have a single technician in each of two blinds.
    3. Have the individual who walked the technician to the blind walk back to the opposite end of the pen.
      NOTE: Deer move away from these technicians and locate themselves in front of the blinds where technicians are in position to take ethical shots on each deer.
    4. Take shots at deer when they are broadside and stationary (section 1.4).
    5. Wait about 15 min for darted animals to become fully immobilized before approaching it.
    6. Confirm individuals are sedated by checking for eye reflexes (blinking). Apply ophthalmic ointment to the eyes and blindfold deer to reduce stress.
    7. After the darters successfully sedate an individual deer, monitor the deer's vital rates.
      1. Use a rectal thermometer to assess body temperature after recovery. Warm deer with heated blankets if the animal's temperature is below 37.7 °C. Cool deer with ice packs if the animal's temperature is above 40.0 °C.
    8. Load the deer on a military-style gurney, and transport it via utility task vehicle to a predetermined data collection area.
    9. Once transported, record the same morphometric measurements recorded at birth (step 4.1).
      1. Measure body mass (nearest 0.01 kg) with a digital hanging scale and measure hind foot length and total body length (nearest mm).
        NOTE: Individual deer react differently to the combination of drugs used during sedation events so administer about 0.1-0.3 cc of the teletamine HCl and xylazine HCl mixture (depending on body mass of an individual deer) if an individual comes out of sedation before data collection is completed.
    10. Administer size-appropriate amounts of antibiotic, ivermectin, a clostidrial vaccine, and a leptospirosis vaccine to all deer after they are transported to the data collection area (see sections 1 and 3).
  3. Take three antler measurements from adult males using an antler measuring tape while the animal is sedated.
    1. Measure the inside spread (widest distance between main beams), basal circumference (smallest diameter located between the burr and G1 tine), and main beam length (distance from antler base to the tip of the main beam) of antlers prior to antler removal.
    2. Remove antlers about 3 cm above the burr using a reciprocating saw. Do not remove antlers less than 3 cm.

figure-protocol-14553
Figure 4: Data Collection of Adult Males. Antler removal via reciprocating saw from a captive adult male white-tailed deer. Please click here to view a larger version of this figure.

  1. After all data is collected from the sedated individual, place the deer into the appropriate pen and administer either 0.125 mg/kg yohimbine HCl28 or 4.0 mg/kg tolazoline HCl32 to reverse the effects of xylazine HCl. Monitor individuals to ensure they remain in a sternal position until they come out of sedation and are fully alert.
    NOTE: If complications occur and animals must be euthanized, then euthanasia by cerebral dislocation via bolt stunner and severing of the jugular vein are ethical means to dispatch the animal.
  2. Bring the antlers to a designated area to finish measuring antler size.
    1. Measure each individual tine protruding from the main beam (G1, G2, G3, etc.) and additional abnormal points by aid of wire.
      NOTE: Points that do not have a matching counterpart on the opposite main beam or are not consistent with the definition of a typical antler set are defined by the Boone and Crockett Club33.
    2. Wrap the wire around where the tine intersects the main beam and mark that point for reference.
    3. Measure from this reference point to the tip of the tine and repeat for each tine.
    4. Collect remaining circumference measurements by identifying the smallest point between the G1 and G2 tines (H2 circumference), the G2 and G3 tines (H3 circumference), and the G3 and G4 tine if present (H4 circumference).
    5. If the G4 tine is not present, measure the distance between the midpoint of the G3 tine and the end of the main beam and measure the H4 circumference at the midway point.
    6. Measure less than four circumferences when antlers contain less than three tines.
      NOTE: For example, a main beam with two typical points include only three circumference measurements. Individuals may use other guidelines (Safari Club International) for calculating antler size; however, consistent methods must be used for each animal for valid comparison.
    7. After making all measurements, calculate an antler score similar to the gross nontypical Boone and Crockett score33.
    8. Weigh antlers to the nearest 0.1 g using a scientific digital scale and assign a minimal critical antler mass of 1 g for first-year animals with antlers shorter than 3 cm.
  3. Chemically immobilize penned juveniles at approximately 5.5 months of age using the same methods for adults (section 4.2) and mark juveniles with a large plastic ear tag (step 4.1.1).
    1. Use the same drug mixture rates to immobilize captive adults as used for immobilizing wild deer (section 1).
    2. Collect the same measurements collected at birth (step 4.1.2) and administer the same prophylactics as adults (section 4.2).
      NOTE: After all data is collected, transport each juvenile male to its randomly assigned satellite facility via trailer.

5. Producing First- and Second-generation Offspring

  1. Classify six-month-old wild-caught fawns and offspring born at the captive facility from wild-caught mothers as first-generation individuals.
  2. During the breeding season, place two males with 7-16 females for an average breeding sex ratio of one male to eight females.
    NOTE: Select breeding males from satellite facilities based on physical appearance, because the healthiest males (largest antlers and body size) are most likely to service females for the entirety of the breeding season without suffering from injury due to the aggressive nature of males during the breeding season.
    1. Only allow deer to breed with other individuals from the same source region (e.g., Delta males breed Delta females, Thin Loess males breed Thin Loess females, and LCP males breed LCP males).
  3. Classify deer conceived by first-generation parents as second-generation offspring. Raise these individuals in captivity from birth and feed the same high-quality diet as their parents.
    NOTE: Females may produce offspring multiple years but typically with different sires each year. Collect the same data on second-generation offspring as collected on first-generation and wild-caught individuals.

结果

个人年龄、 营养品质和遗传学影响雄性白尾鹿表型。我们允许我们的研究设计的营养鹿质量控制消耗和使我们能够识别每个鹿进行有效比较内年班的年龄。通过控制营养和年龄与我们的研究设计,我们得以更好地理解人口水平遗传学是否限制了从两个研究群体表型的男性。改善营养状况对 3.5 岁雄性白尾鹿从每个源区域作为代表由我们代变量 (表 1; 显著疗效?...

讨论

有几个步骤与我们的协议;然而,有必须采取确保与本议定书的成功的四个关键步骤。第一,期间捕获的野鹿,必须有几个捕获地点 (步骤 1.1.1) 单一来源地区。有多个捕获位置可确保鹿表示任何与源区域关联的遗传变异性。第二,鹿必须保持分离的源区在繁殖季节 (1.4.9 和 5.2.1 的步骤)。确保动物被隔开源区域在繁殖期间限制鹿育种只有与其他鹿从他们相同的源区。正在能够唯一地标识每个?...

披露声明

作者没有透露。

致谢

我们感谢密西西比州野生动物部门、 渔业和公园 (MDWFP) 在野生动物恢复法 (W-48-61) 中使用从联邦援助资源的金融支持。我们感谢 MDWFP 生物学家 · 麦金利、 A.Blaylock、 A.Gary L.维尔夫为它们广泛参与了数据集合中。我们还感谢美国塔克作为设施协调员和多个研究生和技术人员对他们的帮助下收集数据。这份手稿是密西西比州大学森林和野生动物研究中心贡献 WFA427。

材料

NameCompanyCatalog NumberComments
Shelled Corn
Elevated Stand
Safety Harness
Ground Blind
Model 196 ProjectorPneu-Dart, Pennsylvania, USA
3cc Radio-Telemetry Darts(Pneu-Dart, Pennsylvania, USA)
Various Sized Darts (Pneu-Dart, Pennsylvania, USA)
Teletamine HCl (Telazol, Fort Dodge Animal Health, Iowa, USA)
Xylazine HCl (West Texas Rx Pharmacy, Amarillo, Texas, USA)
Yhoimbine HCl
Tolazoline HCl
Military Style Gurney
Rectal Thermometer
Shade Cloth
20% Crude Protein Deer Pellets (Purina AntlerMax Professional High Energy Breeder 59UB, Purina, Missouri, USA)
Trough Style Feeders
Commercial Clover (Durana Clover, Pennington Seed Co., Georgia, USA)
Commercial Fescue (Max-Q Fescue, Pennington Seed Co., Georgia, USA)
Blankets
Ice Packs
Broadleaf Weed Control (2, 4-DB Herbacide, Butyrac 200)
Grass Control (Poast Herbacide, BASF Co.)
Pelleted WormerSafeguard Co., active ingredient fenbendazole
Parasite Pour-on Treatment (Ivomec, Merial Co.)
InsecticideRiptide, McLaughlin Gormley King Co.) 
Medium and Large Plastic Ear Tags (Allflex, Texas, USA)
Remote site that assigned parentageDNA Solutions Animal Solutions Manager (DNA Solutions, Oklahoma, USA)
Digital Hanging Scale (Moultrie, EBSCO Industries, Inc.) 
Tape Measure
Clostridium Perfringens Types C and D Toxoid Essential 3 (Colorado Serum Co.)
Clostridium Perfringens Types C and D Antitoxin Equine Origin(Colorado Serum Co.)
Ivermectin in propylene glycol
Antibiotic(Nuflor, Schuering-Plough Animal Health Corp., New Jersey, USA)
Ivermectin (Norbrook Labratories, LTD., Down, Northern Ireland, UK)
Clostidrial vaccine(Vision 7 with SPUR, Ivesco LLC, Iowa, USA)
Leptospirosis vaccine (Leptoferm-5, Pfizer, Inc., New York, USA)
Trailer for transport
Reciprocating saw (DEWALT, Maryland, USA)
Scientific Digital Scale (Global Industrail, Global Equipment Company Inc)
Antler Measuring Tape
Fogger
Plastic Ear Tags (Allflex, Texas, USA)
Plastic Ear Tagger(Allflex, Texas, USA)

参考文献

  1. Bernardo, J. Maternal effects in animal ecology. Amer Zool. 36 (2), 83-105 (1996).
  2. Forchhammer, M. C., Clutton-Brock, T. H., Lindstrom, J., Albon, S. D. Climate andpopulation density induce long-term cohort variation in a northern ungulate. J Anim Ecol. 70 (5), 721-729 (2001).
  3. Freeman, E. D., Larsen, R. T., Clegg, K., McMillan, B. R. Long-lasting effects of maternal condition in free-ranging cervids. PLoS ONE. 8 (3), 5873 (2013).
  4. Geist, V., Burton, M. N. Environmentally guided phenotype plasticity in mammals and some of its consequences to theoretical and applied biology. Alternative life-history styles of animals. , 153-176 (1989).
  5. Clutton-Brock, T. H., Guinness, F. E., Albon, S. D. Reproductive success in stags. Red Deer: Behavior and ecology of two sexes. , 151-152 (1982).
  6. Coltman, D. W., Festa-Bianchet, M., Jorgenson, J. T., Strobeck, C. Age-dependent sexual selection in bighorn rams. Proc R Soc Lond B Biol Sci. 269 (1487), 165-172 (2002).
  7. Festa-Bianchet, M. The cost of trying: Weak interspecific correlations among life-history components in male ungulates. Can J Zool. 90 (9), 1072-1085 (2012).
  8. Kie, J. G., et al. Reproduction in North American elk Cervus elaphus.: Paternity of calves sired by males of mixed age classes. Wildlife Biol. 19 (3), 302-310 (2013).
  9. Welch, C. A., Keay, J., Kendall, K. C., Robbins, C. T. Constraints on frugivory by bears. Ecology. 78 (4), 1105-1119 (1997).
  10. Madsen, T., Shine, R. Silver spoons and snake body sizes: Prey availability early in life influences long-term growth rates of free-ranging pythons. J Anim Ecol. 69 (6), 952-958 (2000).
  11. Saino, N., Romano, M., Rubolini, D., Caprioli, M., Ambrosini, R., Fasola, M. Food supplementation affects egg albumen content and body size asymmetry among yellow-legged gull siblings. Behav Ecol Sociobiol. 64 (11), 1813-1821 (2010).
  12. Strickland, B. K., Demarais, S. Age and regional differences in antlers and mass of white-tailed deer. J Wildl Manage. 64 (4), 903-911 (2000).
  13. Jones, P. D., Demarais, S., Strickland, B. K., Edwards, S. L. Soil region effects on white-tailed deer forage protein content. Southeast Nat. 7 (4), 595-606 (2008).
  14. Strickland, B. K., Demarais, S. Influence of landscape composition and structure on antler size of white-tailed deer. J Wildl Manage. 72 (5), 1101-1108 (2008).
  15. DeYoung, R. W., Demarais, S., Honeycutt, R. L., Rooney, A. P., Gonzales, R. A., Gee, K. L. Genetic consequences of white-tailed deer (Odocoileus virginianus) restoration in Mississippi. Mol Ecol. 12 (12), 3237-3252 (2003).
  16. Sumners, J. A., et al. Variable breeding dates among populations of white-tailed deer in the southern United States: The legacy of restocking. J Wildl Manage. 79 (8), 1213-1225 (2015).
  17. Mech, D. L., Nelson, M. E., McRoberts, R. E. Effects of maternal and grandmaternal nutrition on deer mass and vulnerability to wolf predation. J Mammal. 72 (1), 146-151 (1991).
  18. Therrien, J. F., Còtê, S., Festa-Bianchet, D. M., Ouellet, J. P. Maternal care in white-tailed deer: trade-off between maintenance and reproduction under food restriction. Anim Behav. 75 (1), 235-243 (2008).
  19. Parker, K. L., Barboza, P. S., Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct Ecol. 23 (1), 57-69 (2009).
  20. Monteith, K. L., Schmitz, L. E., Jenks, J. A., Delger, J. A., Bowyer, R. T. Growth of male white-tailed deer: consequences of maternal effects. J Mammal. 90 (3), 651-660 (2009).
  21. Tollefson, T. N., Shipley, L. A., Myers, W. L., Keisler, D. H., Nairanjana, D. Influence of summer and autumn nutrition on body condition and reproduction in lactating mule deer. J Wildl Manage. 74 (5), 974-986 (2010).
  22. Guynn, D. C., Mott, S. P., Cotton, W. D., Jacobson, H. A. Cooperative management of white-tailed deer on private lands in Mississippi. Wildl Soc Bull. 11 (3), 211-214 (1983).
  23. Pettry, D. E. Soil resource areas of Mississippi. Mississippi Agricultural and Forestry Experiment Station. , (1977).
  24. Snipes, C. E., Nichols, S. P., Poston, D. H., Walker, T. W., Evans, L. P., Robinson, H. R. Current agricultural practices of the Mississippi Delta. Office of Agricultural Communications. , (2005).
  25. Baker, R. H., Halls, L. K. Origin, classification, and distribution of the white-tailed deer. White-tailed deer: ecology and management. , 1-18 (1984).
  26. Barbour, T., Allen, G. M. The white-tailed deer of eastern United States). J Mammal. 3 (2), 65-80 (1922).
  27. Rouleau, I., Crête, M., Ouellet, J. P. Contrasting the summer ecology of white-taileddeer inhabiting a forested and an agricultural landscape. Ecoscience. 9 (4), 459-469 (2002).
  28. Kreeger, T. J. . Handbook of wildlife chemical immobilization. , (1996).
  29. Pound, J. M., Miller, J. A., Oethler, D. D. Depletion rates of injected and ingested Ivermectin from blood serum of penned white-tailed deer, Odocoileus virginianus (Zimmermann) (Artiodactyla: Cervidae). J Medl Entomol. 41 (1), 65-68 (2004).
  30. Jones, P. D., Demarais, S., Strickland, B. K., DeYoung, R. W. Inconsistent relation of male body mass with breeding success in captive white-tailed deer. J Mammal. 92 (3), 527-533 (2011).
  31. Michel, E. S., Flinn, E. B., Demarais, S., Strickland, B. K., Wang, G., Dacus, C. M. Improved nutrition cues switch from efficiency to luxury phenotypes for a long-lived ungulate. Ecol Evol. 6 (20), 7276-7285 (2016).
  32. Miller, B. F., Muller, L. I., Doherty, T., Osborn, D. A., Miller, K. V., Warren, R. J. Effectiveness of antagonists for tiletamine-zolazepam/xylazine immobilization in female white-tailed deer. J Wildl Dis. 40 (3), 533-537 (2004).
  33. Nesbitt, W. H., Wright, P. L., Buckner, E. L., Byers, C. R., Reneau, J. . Measuring and scoring North American big game trophies. 3rd edn. , (2009).
  34. Michel, E. S., Demarais, S., Strickland, B. K., Smith, T., Dacus, C. M. Antler characteristics are highly heritable but influenced by maternal factors. J Wildl Manage. 80 (8), 1420-1426 (2016).
  35. Severinghaus, C. W. Tooth development and wear as criteria of age in white-tailed deer. J Wildl Manage. 13 (2), 195-216 (1949).
  36. Gee, K. L., Webb, S. L., Holman, J. H. Accuracy and implications of visually estimating age of male white-tailed deer using physical characteristics from photographs. Wild Soc Bull. 38, 96-102 (2014).
  37. Storm, D. J., Samuel, M. D., Rolley, R. E., Beissel, T., Richards, B. J., Van Deelen, T. R. Estimating ages of white-tailed deer: Age and sex patterns of error using tooth wear-and-replacement and consistency of cementum annuli. Wild Soc Bull. 38 (1), 849-865 (2014).
  38. Montero, D., Izquierdo, M. S., Tort, L., Robaina, L., Vergara, J. M. High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata., juveniles. Fish Physiol Biochem. 20 (1), 53-60 (1999).
  39. Charbonnel, N., et al. Stress demographic decline: a potential effect mediated by impairment of reproduction and immune function in cyclic vole populations. Physiol Biochem Zool. 81 (1), 63-73 (2008).
  40. Crews, D., Gillette, R., Scarpino, S. V., Manikkam, M., Savenkova, M. I., Skinner, M. K. Epigenetic transgenerational inheritance of altered stress responses. Proc Natl Acad Sci. 109 (23), 9143-9148 (2012).
  41. Maher, J. M., Werner, E. E., Denver, R. J. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc R Soc Lond B Biol Sci. 280 (1758), 20123075 (2013).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

126

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。