JoVE Logo

Войдите в систему

Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.

В этой статье

  • Резюме
  • Аннотация
  • Введение
  • протокол
  • Результаты
  • Обсуждение
  • Раскрытие информации
  • Благодарности
  • Материалы
  • Ссылки
  • Перепечатки и разрешения

Резюме

Фенотипические различия среди cervid населения может быть связано с уровня населения генетики или питания; различение, которое трудно в дикой природе. Этот протокол описывает, как мы разработали контролируемого исследования, где питания вариация была ликвидирована. Мы обнаружили, что фенотипические изменения мужской белохвостый олень был более ограниченным питания чем генетика.

Аннотация

Cervid фенотипом могут быть помещены в одну из двух категорий: эффективность, которая продвигает выживание более экстравагантные морфометрические роста и роскоши, которая способствует росту большого размера вооружения и тела. Население того же вида отображения каждого фенотипа, в зависимости от условий окружающей среды. Хотя рога и тела размер мужской белохвостый олень (рода виргинский) зависит от физико-географических региона в Миссисипи, США и сильно коррелирует с региональные различия в питательные качества, нельзя игнорировать влияние уровня населения генетики из собственных запасов и предыдущие усилия повторное хранение. Этот протокол описывает, как мы разработали контролируемого исследования, где другие факторы, которые влияют фенотип, таких как возраст и питания, находятся под контролем. Мы принесли поймали дикого беременные самки и молодые олени шести месячный из трех различных физико-географических регионов в Миссисипи, США Миссисипи государственного университета ржавые Докинз Мемориал оленей группе. Олень из того же региона были разведены для получения второго поколения потомства, что позволяет нам оценить поколений ответы и эффектов со стороны матери. Все оленей ели же высокое качество (20% сырого протеина оленей Пелле) диета ad libitum. Мы однозначно отмечен каждый новорожденный и записал тело массы, задние ноги и длине всего тела. Каждого последующего падения, мы седативные лица через дистанционного инъекций и отведать же морфометрии плюс пантов взрослых. Мы обнаружили, что все морфометрии увеличилась в размерах от первого до второго поколения, с полной компенсации рога размер (больше нет региональных вариаций) и частичной компенсации массы тела (некоторые данные о региональных вариаций) очевидно во втором поколении. Второе поколение мужчин, которые возникли из наших бедных качества почвы региона отображается о 40% увеличение размера рога и 25%, увеличение массы тела, когда по сравнению с их диких собранного. Наши результаты показывают, фенотипические изменения диких мужчин белохвостый олень в Миссисипи больше связаны с различиями в питании качества чем уровень населения генетики.

Введение

Экологические факторы, которые испытывает мать во время беременности и лактации может повлиять на ее потомство фенотип, независимо от генотипа1,2,3. Матери, которые населяют высокого качества окружающей среды скорее всего будет производить потомство, что выставка роскоши фенотип (большие рога и тела размер4), тогда как матерей, которые населяют среде низкого качества может производить потомство, которые демонстрируют эффективность фенотип (небольшие рога и тела размер4). Таким образом сохранение в условиях высокого качества может позволить мать производить мужского потомства с большими фенотипические характеристики, которые могут непосредственно влиять на потомство репродуктивные возможности5,6,,78 и косвенно влиять на матери приспособленность.

Хотя питания непосредственно влияет фенотипические характеристики различных таксонам (Ursus americanus, Ursus arctos9; Водяные питоны fuscusI 10; Larus michahellis 11), белохвостый олень фенотипы в Миссисипи, США могут влиять несколько факторов. Размер тела и рога являются примерно одну треть больше для некоторых групп населения по сравнению с другими12. Эта разновидность сильно коррелирует с кормом качества13,14; крупнейший мужчины находятся в районах с наивысшего качества кормов. Однако исторической реставрации усилия белохвостый олень в Миссисипи могут привели к генетическим узких мест и/или основатель эффекты15,16, которая может частично объяснить некоторые из наблюдаемых региональные различия в фенотипе белохвостый олень.

Мы предоставляем протокол, который мы использовали для контроля питания качества поймали дикого белохвостый олень, что позволило нам оценить ли мужчин фенотип ограничивается уровня населения генетики. Этот протокол также позволило нам оценить ли отставание материнской последствия были представлены в наших народов. Наш контролируемых дизайн является предпочтительным для исследования, проведенные на бесплатный диапазоне населения, которые ограничиваются использованием экологических переменных как прокси для питания ограничение3,17. Наши контролируемых дизайн также позволяет для других переменных, такие, как потенциал хронический стресс связанные с социальных взаимодействий для проводиться постоянно, как все люди подвергаются аналогичного жилья и практики животноводства. Кроме того потому что питание непосредственно влияет на другие аспекты жизни истории от воспроизводства до выживания18,19, контроль питания позволяет для следователей, чтобы оценить другие переменные, которые влияют на млекопитающих истории жизни аспекты. Были описаны аналогичные протоколы для оценки вопросов, связанных с аспектами истории жизни для других копытных в Северной Америке (например,, 20-21).

протокол

Ethics Statement: The Mississippi State University Institutional Animal Care and Use Committee approved all capture, handling, and marking techniques under protocols 04-068, 07-036, 10-033 and 13-034.

1. Establish Capture Sites, Immobilize and Transport wild White-tailed Deer

  1. Identify public and private properties that are enrolled in the Deer Management Assistance Program22 and establish ≥29 capture sites throughout three source regions in Mississippi, USA.
    1. Identify several capture locations within each source region to ensure that the range of genetic variation present in the regional population is captured.
    2. Note: Here, source regions included the Delta, which comprises almost 17% of total land area in Mississippi, USA, and is considered a high-quality soil region with agriculture as the primary land use23,24. All study animals were captured from this region within the distribution of O. v. virginianus25. Other regions included the Thin Loess region (upper and lower Thin Loess combined), which comprises almost 14% of total land area in Mississippi, USA and is considered a medium quality soil region. Agriculture is also a primary land use in the Thin Loess region, though not as prevalent as in the Delta23,24. All study animals were captured from this region within the distribution of O. v. virginianus21. Lastly, the Lower Coastal Plain (LCP) soil region comprises nearly 22% of Mississippi and is classified as a low quality soil region. Primary land uses in the LCP are pine timber production and livestock grazing23,24. The LCP also overlaps the geographical distribution of O. v. osceola; four of the six source populations were within 21 km of this distribution25. This subspecies was described as smaller than O. v. virginianus26.

figure-protocol-2231
Figure 1: Source Populations. Physiographic regions where pregnant dams and fawns were caught in Mississippi, USA. This figure has been modified from reference31. Please click here to view a larger version of this figure.

  1. Select potential capture sites that meet the following criteria; habitat characteristics conducive to deer movement, proximity to roads for access, and distribution across the study area.
    NOTE: Capture sites must allow for concealment of the capture technician.
    1. Bait sites with about 10 kg of shelled corn to entice deer to visit and evaluate use based on bait consumption and deer photographed by motion-sensitive cameras. Relocate to alternate sites if deer do not attend baited sites within 5-7 days.
  2. During capture events, sit in a concealed "stand."
    1. Place stand about 20 m downwind from the bait pile, taking the prevailing wind direction into consideration so that deer approaching the bait are less able to smell the capture technician.
      NOTE: Elevated stands are strongly preferred, and safety harnesses are required. There are several variations of stands with a variety of commercial sources and use varies by personal preference. For example, a lock-on stand would include seating with a ladder for access attached to a tree with straps. Portable climbing stands can be carried in by the capture technician and allow for increased mobility as the technician can choose a specific tree once they arrive at the capture site. Portable climbing stands are limited to use in straight trees without branches up the chosen height.
  3. Use a dart gun coupled with a 3 cc radio-telemetry dart to deliver a mixture of teletamine HCl (4.4 mg/kg) and xylazine HCl (2.2 mg/kg).
    1. Schedule capture efforts to coincide with the typical crepuscular activity cycle of deer27. Begin each capture attempt 2-3 h prior to sunset.
    2. Continue capture events for 2-3 h after sunset using night-vision goggles and a red dot laser for shot placement if deer are not captured during daylight hours.
    3. Take shots at deer when they are broadside and stationary.
      NOTE: The hind quarter of the deer is the target because it has significant muscle tissue and is located away from the heart and lungs.
    4. Wait about 15 min for darted target animals (six-month-old fawns of either sex or pregnant adult females) to become fully immobilized before locating it with directional radio-telemetry equipment.
    5. Confirm individuals are sedated by checking for eye reflexes (blinking). Then apply ophthalmic ointment to the eyes and blindfold deer to reduce stress.
      NOTE: Loss of thermoregulation is a consequence of immobilization.
    6. Use a rectal thermometer to assess body temperature after recovery. Warm deer with heated blankets if the animal's temperature is below 37.7 °C. Cool deer with ice packs if the animal's temperature is above 40.0 °C.
    7. Place deer in a sternal position on a military style gurney and transport deer from the capture location to an enclosed trailer.
    8. After placing the deer into the trailer, reverse the effects of xylazine HCl with 0.125 mg/kg yohimbine HCl28.
    9. Transport all captured deer to the desired captive facility (e.g., Mississippi State University Rusty Dawkins Memorial Deer Unit; MSU Deer Unit) and keep them separated by source region.

2. Captive Facilities and General Husbandry Practices of Research Animals

NOTE: The MSU Deer Unit is subdivided into five 0.4 to 0.8 ha pens.

  1. Cover every side of each pen with shade cloth to act as a visual and physical barrier between pens. Shade cloth helps reduce injuries and provides shade during summer months.
  2. Place 1-2 elevated box blinds at one end of each pen to facilitate darting events during data collection.
  3. Place two trough style feeders at separate ends of each pen to reduce competition for food among deer. Also provide a water trough in each pen.
  4. Provide deer with a high-quality diet (20% crude protein deer pellets) ad libitum.
    NOTE: Here, additional available forages within pens included (Trifolium spp) and fescue (Festuca spp) along with volunteer grasses and forbs.
  5. If present, maintain available forages within pens using a mixture of herbicides to control broadleaf weeds and grasses using mixture rates found on respective labels.
    NOTE: Using off-campus facilities to house ≥5.5 month old males will likely be needed. These facilities consisted of two 0.7 ha pens on each of three properties with husbandry practices similar to the MSU Deer Unit.

figure-protocol-7455
Figure 2: Captive Facility Locations. Study area where satellite facilities and the Mississippi State University (MSU) Deer Unit were located. Shaded areas indicate Oktibbeha (A), Noxubee (B), Attala (C), Scott (D), and Copiah (E), counties, Mississippi, USA.This figure has been modified from reference34. Please click here to view a larger version of this figure.

3. Parasite and Disease Control

  1. Monitor research animals for roundworm parasites (Strongyloides spp) using fecal floatation with parasites measured as eggs per gram (EPG).
    1. If present at high levels, provide parasite control by administering a pelleted wormer (active ingredient fenbendazole) at a rate of about 0.77 kg of pelleted wormer per 22.7 kg of feed during the month of May.
    2. If parasite levels remain high after initial treatment, use an ivermectin pour-on treatment (5 mg/mL)29, mixed at a rate of 2 mL/0.45 kg and administer to animals at a rate of 0.45 kg of treated feed per 45.4 kg of animal mass.
      NOTE: Epizootic hemorrhagic disease is sometimes lethal viral disease spread by a biting midge (Culicoides spp) during summer and fall months. If present, treat the research facility with insecticide (5% ultra-low volume insecticide) 2-3 times per week from July 1 to October 1 to decrease prevalence of the vectors among research animals. Spray this insecticide within each pen and around the perimeter of the facility about 90 min before official sunset via fogger. Preferred methods to control for parasites and diseases are unique to each captive facility. Veterinarians must be consulted during any captive wildlife research to ensure animal health and safety.

4. Data Collection

figure-protocol-9661
Figure 3: Data Collection of Newborn Fawns. Measuring hind foot length from a new born fawn at the Mississippi State University Rusty Dawkins Memorial Deer Unit in Oktibbeha County, Mississippi, USA. Please click here to view a larger version of this figure.

  1. Search the captive facility daily for fawns during the parturition season.
    1. Uniquely mark newborn fawns with medium plastic ear tags using an ear tagger with antibiotic applied to the male end of the tag to prevent potential infection. Place ear tag about the center of the fawn's ear.
    2. Measure body mass (nearest 0.01 kg) with a digital hanging scale and measure hind foot length and total body length (nearest mm).
    3. Collect hair samples and send them to a remote site for parentage assignment (see the Table of Materials).
      NOTE: Parentage assignment was made using DNA based on a proprietary, non-statistical custom structured query language database. In the pairwise allele comparison, the remote parentage assignment site assigned parentage when they excluded all but one sire and one dam based upon a shared allele from each parent at all loci tested (B. G. Cassidy, personal communication). This method of parentage assignment was also used in previous research conducted on captive white-tailed deer30,31.
    4. Administer 2 cc of Clostridium perfringens types C and D toxoid and Clostridium perfringens types C and D antitoxin subcutaneously and administer 0.3 cc/kg of ivermectin in propylene glycol (Mississippi State University Veterinarian School, Mississippi, USA) orally to each fawn.
  2. Chemically immobilize adult males (≥1.5 years-old) during October and November for data collection.
    1. Immobilize penned adults using the same combination of teletamine HCl and xylazine HCl used for capture of wild animals (step 1.4).
    2. During sedation events, walk the technician who will be darting to the end of the pen where the elevated blinds are located. Have a single technician in each of two blinds.
    3. Have the individual who walked the technician to the blind walk back to the opposite end of the pen.
      NOTE: Deer move away from these technicians and locate themselves in front of the blinds where technicians are in position to take ethical shots on each deer.
    4. Take shots at deer when they are broadside and stationary (section 1.4).
    5. Wait about 15 min for darted animals to become fully immobilized before approaching it.
    6. Confirm individuals are sedated by checking for eye reflexes (blinking). Apply ophthalmic ointment to the eyes and blindfold deer to reduce stress.
    7. After the darters successfully sedate an individual deer, monitor the deer's vital rates.
      1. Use a rectal thermometer to assess body temperature after recovery. Warm deer with heated blankets if the animal's temperature is below 37.7 °C. Cool deer with ice packs if the animal's temperature is above 40.0 °C.
    8. Load the deer on a military-style gurney, and transport it via utility task vehicle to a predetermined data collection area.
    9. Once transported, record the same morphometric measurements recorded at birth (step 4.1).
      1. Measure body mass (nearest 0.01 kg) with a digital hanging scale and measure hind foot length and total body length (nearest mm).
        NOTE: Individual deer react differently to the combination of drugs used during sedation events so administer about 0.1-0.3 cc of the teletamine HCl and xylazine HCl mixture (depending on body mass of an individual deer) if an individual comes out of sedation before data collection is completed.
    10. Administer size-appropriate amounts of antibiotic, ivermectin, a clostidrial vaccine, and a leptospirosis vaccine to all deer after they are transported to the data collection area (see sections 1 and 3).
  3. Take three antler measurements from adult males using an antler measuring tape while the animal is sedated.
    1. Measure the inside spread (widest distance between main beams), basal circumference (smallest diameter located between the burr and G1 tine), and main beam length (distance from antler base to the tip of the main beam) of antlers prior to antler removal.
    2. Remove antlers about 3 cm above the burr using a reciprocating saw. Do not remove antlers less than 3 cm.

figure-protocol-14553
Figure 4: Data Collection of Adult Males. Antler removal via reciprocating saw from a captive adult male white-tailed deer. Please click here to view a larger version of this figure.

  1. After all data is collected from the sedated individual, place the deer into the appropriate pen and administer either 0.125 mg/kg yohimbine HCl28 or 4.0 mg/kg tolazoline HCl32 to reverse the effects of xylazine HCl. Monitor individuals to ensure they remain in a sternal position until they come out of sedation and are fully alert.
    NOTE: If complications occur and animals must be euthanized, then euthanasia by cerebral dislocation via bolt stunner and severing of the jugular vein are ethical means to dispatch the animal.
  2. Bring the antlers to a designated area to finish measuring antler size.
    1. Measure each individual tine protruding from the main beam (G1, G2, G3, etc.) and additional abnormal points by aid of wire.
      NOTE: Points that do not have a matching counterpart on the opposite main beam or are not consistent with the definition of a typical antler set are defined by the Boone and Crockett Club33.
    2. Wrap the wire around where the tine intersects the main beam and mark that point for reference.
    3. Measure from this reference point to the tip of the tine and repeat for each tine.
    4. Collect remaining circumference measurements by identifying the smallest point between the G1 and G2 tines (H2 circumference), the G2 and G3 tines (H3 circumference), and the G3 and G4 tine if present (H4 circumference).
    5. If the G4 tine is not present, measure the distance between the midpoint of the G3 tine and the end of the main beam and measure the H4 circumference at the midway point.
    6. Measure less than four circumferences when antlers contain less than three tines.
      NOTE: For example, a main beam with two typical points include only three circumference measurements. Individuals may use other guidelines (Safari Club International) for calculating antler size; however, consistent methods must be used for each animal for valid comparison.
    7. After making all measurements, calculate an antler score similar to the gross nontypical Boone and Crockett score33.
    8. Weigh antlers to the nearest 0.1 g using a scientific digital scale and assign a minimal critical antler mass of 1 g for first-year animals with antlers shorter than 3 cm.
  3. Chemically immobilize penned juveniles at approximately 5.5 months of age using the same methods for adults (section 4.2) and mark juveniles with a large plastic ear tag (step 4.1.1).
    1. Use the same drug mixture rates to immobilize captive adults as used for immobilizing wild deer (section 1).
    2. Collect the same measurements collected at birth (step 4.1.2) and administer the same prophylactics as adults (section 4.2).
      NOTE: After all data is collected, transport each juvenile male to its randomly assigned satellite facility via trailer.

5. Producing First- and Second-generation Offspring

  1. Classify six-month-old wild-caught fawns and offspring born at the captive facility from wild-caught mothers as first-generation individuals.
  2. During the breeding season, place two males with 7-16 females for an average breeding sex ratio of one male to eight females.
    NOTE: Select breeding males from satellite facilities based on physical appearance, because the healthiest males (largest antlers and body size) are most likely to service females for the entirety of the breeding season without suffering from injury due to the aggressive nature of males during the breeding season.
    1. Only allow deer to breed with other individuals from the same source region (e.g., Delta males breed Delta females, Thin Loess males breed Thin Loess females, and LCP males breed LCP males).
  3. Classify deer conceived by first-generation parents as second-generation offspring. Raise these individuals in captivity from birth and feed the same high-quality diet as their parents.
    NOTE: Females may produce offspring multiple years but typically with different sires each year. Collect the same data on second-generation offspring as collected on first-generation and wild-caught individuals.

Результаты

Индивидуальные возраста, питательные качества и генетики влияние мужской белохвостый олень фенотип. Наш дизайн исследования позволили нам контролировать качество питания оленя были потребления и позволил нам определить возраст каждого оленя для допустимых сопоста...

Обсуждение

Есть несколько шагов, связанных с нашей протокола; Однако есть четыре важнейшие шаги, которые должны быть приняты для обеспечения успеха с настоящим Протоколом. Во-первых во время захвата диких оленей, должны быть несколько захвата мест во всем регионе единого источника (шаг 1.1.1). Наличи...

Раскрытие информации

Авторы не имеют ничего сообщать.

Благодарности

Мы благодарим Департамент дикой природы Миссисипи, рыболовства и парки (MDWFP) за финансовую поддержку, с использованием ресурсов из федеральной помощи в Закон о восстановлении дикой природы (W-48-61). Мы благодарим MDWFP биологи W. Мак-Кинли, A. Blaylock, A. Gary и L. Уилф за их активное участие в сборе данных. Мы также благодарим S. Tucker как Координатор Фонда и несколько студентов, аспирантов и специалистов за их помощь в сборе данных. Эта рукопись является вкладом WFA427 Миссисипи государственного университета леса и научно-исследовательский центр дикой природы.

Материалы

NameCompanyCatalog NumberComments
Shelled Corn
Elevated Stand
Safety Harness
Ground Blind
Model 196 ProjectorPneu-Dart, Pennsylvania, USA
3cc Radio-Telemetry Darts(Pneu-Dart, Pennsylvania, USA)
Various Sized Darts (Pneu-Dart, Pennsylvania, USA)
Teletamine HCl (Telazol, Fort Dodge Animal Health, Iowa, USA)
Xylazine HCl (West Texas Rx Pharmacy, Amarillo, Texas, USA)
Yhoimbine HCl
Tolazoline HCl
Military Style Gurney
Rectal Thermometer
Shade Cloth
20% Crude Protein Deer Pellets (Purina AntlerMax Professional High Energy Breeder 59UB, Purina, Missouri, USA)
Trough Style Feeders
Commercial Clover (Durana Clover, Pennington Seed Co., Georgia, USA)
Commercial Fescue (Max-Q Fescue, Pennington Seed Co., Georgia, USA)
Blankets
Ice Packs
Broadleaf Weed Control (2, 4-DB Herbacide, Butyrac 200)
Grass Control (Poast Herbacide, BASF Co.)
Pelleted WormerSafeguard Co., active ingredient fenbendazole
Parasite Pour-on Treatment (Ivomec, Merial Co.)
InsecticideRiptide, McLaughlin Gormley King Co.) 
Medium and Large Plastic Ear Tags (Allflex, Texas, USA)
Remote site that assigned parentageDNA Solutions Animal Solutions Manager (DNA Solutions, Oklahoma, USA)
Digital Hanging Scale (Moultrie, EBSCO Industries, Inc.) 
Tape Measure
Clostridium Perfringens Types C and D Toxoid Essential 3 (Colorado Serum Co.)
Clostridium Perfringens Types C and D Antitoxin Equine Origin(Colorado Serum Co.)
Ivermectin in propylene glycol
Antibiotic(Nuflor, Schuering-Plough Animal Health Corp., New Jersey, USA)
Ivermectin (Norbrook Labratories, LTD., Down, Northern Ireland, UK)
Clostidrial vaccine(Vision 7 with SPUR, Ivesco LLC, Iowa, USA)
Leptospirosis vaccine (Leptoferm-5, Pfizer, Inc., New York, USA)
Trailer for transport
Reciprocating saw (DEWALT, Maryland, USA)
Scientific Digital Scale (Global Industrail, Global Equipment Company Inc)
Antler Measuring Tape
Fogger
Plastic Ear Tags (Allflex, Texas, USA)
Plastic Ear Tagger(Allflex, Texas, USA)

Ссылки

  1. Bernardo, J. Maternal effects in animal ecology. Amer Zool. 36 (2), 83-105 (1996).
  2. Forchhammer, M. C., Clutton-Brock, T. H., Lindstrom, J., Albon, S. D. Climate andpopulation density induce long-term cohort variation in a northern ungulate. J Anim Ecol. 70 (5), 721-729 (2001).
  3. Freeman, E. D., Larsen, R. T., Clegg, K., McMillan, B. R. Long-lasting effects of maternal condition in free-ranging cervids. PLoS ONE. 8 (3), 5873 (2013).
  4. Geist, V., Burton, M. N. Environmentally guided phenotype plasticity in mammals and some of its consequences to theoretical and applied biology. Alternative life-history styles of animals. , 153-176 (1989).
  5. Clutton-Brock, T. H., Guinness, F. E., Albon, S. D. Reproductive success in stags. Red Deer: Behavior and ecology of two sexes. , 151-152 (1982).
  6. Coltman, D. W., Festa-Bianchet, M., Jorgenson, J. T., Strobeck, C. Age-dependent sexual selection in bighorn rams. Proc R Soc Lond B Biol Sci. 269 (1487), 165-172 (2002).
  7. Festa-Bianchet, M. The cost of trying: Weak interspecific correlations among life-history components in male ungulates. Can J Zool. 90 (9), 1072-1085 (2012).
  8. Kie, J. G., et al. Reproduction in North American elk Cervus elaphus.: Paternity of calves sired by males of mixed age classes. Wildlife Biol. 19 (3), 302-310 (2013).
  9. Welch, C. A., Keay, J., Kendall, K. C., Robbins, C. T. Constraints on frugivory by bears. Ecology. 78 (4), 1105-1119 (1997).
  10. Madsen, T., Shine, R. Silver spoons and snake body sizes: Prey availability early in life influences long-term growth rates of free-ranging pythons. J Anim Ecol. 69 (6), 952-958 (2000).
  11. Saino, N., Romano, M., Rubolini, D., Caprioli, M., Ambrosini, R., Fasola, M. Food supplementation affects egg albumen content and body size asymmetry among yellow-legged gull siblings. Behav Ecol Sociobiol. 64 (11), 1813-1821 (2010).
  12. Strickland, B. K., Demarais, S. Age and regional differences in antlers and mass of white-tailed deer. J Wildl Manage. 64 (4), 903-911 (2000).
  13. Jones, P. D., Demarais, S., Strickland, B. K., Edwards, S. L. Soil region effects on white-tailed deer forage protein content. Southeast Nat. 7 (4), 595-606 (2008).
  14. Strickland, B. K., Demarais, S. Influence of landscape composition and structure on antler size of white-tailed deer. J Wildl Manage. 72 (5), 1101-1108 (2008).
  15. DeYoung, R. W., Demarais, S., Honeycutt, R. L., Rooney, A. P., Gonzales, R. A., Gee, K. L. Genetic consequences of white-tailed deer (Odocoileus virginianus) restoration in Mississippi. Mol Ecol. 12 (12), 3237-3252 (2003).
  16. Sumners, J. A., et al. Variable breeding dates among populations of white-tailed deer in the southern United States: The legacy of restocking. J Wildl Manage. 79 (8), 1213-1225 (2015).
  17. Mech, D. L., Nelson, M. E., McRoberts, R. E. Effects of maternal and grandmaternal nutrition on deer mass and vulnerability to wolf predation. J Mammal. 72 (1), 146-151 (1991).
  18. Therrien, J. F., Còtê, S., Festa-Bianchet, D. M., Ouellet, J. P. Maternal care in white-tailed deer: trade-off between maintenance and reproduction under food restriction. Anim Behav. 75 (1), 235-243 (2008).
  19. Parker, K. L., Barboza, P. S., Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct Ecol. 23 (1), 57-69 (2009).
  20. Monteith, K. L., Schmitz, L. E., Jenks, J. A., Delger, J. A., Bowyer, R. T. Growth of male white-tailed deer: consequences of maternal effects. J Mammal. 90 (3), 651-660 (2009).
  21. Tollefson, T. N., Shipley, L. A., Myers, W. L., Keisler, D. H., Nairanjana, D. Influence of summer and autumn nutrition on body condition and reproduction in lactating mule deer. J Wildl Manage. 74 (5), 974-986 (2010).
  22. Guynn, D. C., Mott, S. P., Cotton, W. D., Jacobson, H. A. Cooperative management of white-tailed deer on private lands in Mississippi. Wildl Soc Bull. 11 (3), 211-214 (1983).
  23. Pettry, D. E. Soil resource areas of Mississippi. Mississippi Agricultural and Forestry Experiment Station. , (1977).
  24. Snipes, C. E., Nichols, S. P., Poston, D. H., Walker, T. W., Evans, L. P., Robinson, H. R. Current agricultural practices of the Mississippi Delta. Office of Agricultural Communications. , (2005).
  25. Baker, R. H., Halls, L. K. Origin, classification, and distribution of the white-tailed deer. White-tailed deer: ecology and management. , 1-18 (1984).
  26. Barbour, T., Allen, G. M. The white-tailed deer of eastern United States). J Mammal. 3 (2), 65-80 (1922).
  27. Rouleau, I., Crête, M., Ouellet, J. P. Contrasting the summer ecology of white-taileddeer inhabiting a forested and an agricultural landscape. Ecoscience. 9 (4), 459-469 (2002).
  28. Kreeger, T. J. . Handbook of wildlife chemical immobilization. , (1996).
  29. Pound, J. M., Miller, J. A., Oethler, D. D. Depletion rates of injected and ingested Ivermectin from blood serum of penned white-tailed deer, Odocoileus virginianus (Zimmermann) (Artiodactyla: Cervidae). J Medl Entomol. 41 (1), 65-68 (2004).
  30. Jones, P. D., Demarais, S., Strickland, B. K., DeYoung, R. W. Inconsistent relation of male body mass with breeding success in captive white-tailed deer. J Mammal. 92 (3), 527-533 (2011).
  31. Michel, E. S., Flinn, E. B., Demarais, S., Strickland, B. K., Wang, G., Dacus, C. M. Improved nutrition cues switch from efficiency to luxury phenotypes for a long-lived ungulate. Ecol Evol. 6 (20), 7276-7285 (2016).
  32. Miller, B. F., Muller, L. I., Doherty, T., Osborn, D. A., Miller, K. V., Warren, R. J. Effectiveness of antagonists for tiletamine-zolazepam/xylazine immobilization in female white-tailed deer. J Wildl Dis. 40 (3), 533-537 (2004).
  33. Nesbitt, W. H., Wright, P. L., Buckner, E. L., Byers, C. R., Reneau, J. . Measuring and scoring North American big game trophies. 3rd edn. , (2009).
  34. Michel, E. S., Demarais, S., Strickland, B. K., Smith, T., Dacus, C. M. Antler characteristics are highly heritable but influenced by maternal factors. J Wildl Manage. 80 (8), 1420-1426 (2016).
  35. Severinghaus, C. W. Tooth development and wear as criteria of age in white-tailed deer. J Wildl Manage. 13 (2), 195-216 (1949).
  36. Gee, K. L., Webb, S. L., Holman, J. H. Accuracy and implications of visually estimating age of male white-tailed deer using physical characteristics from photographs. Wild Soc Bull. 38, 96-102 (2014).
  37. Storm, D. J., Samuel, M. D., Rolley, R. E., Beissel, T., Richards, B. J., Van Deelen, T. R. Estimating ages of white-tailed deer: Age and sex patterns of error using tooth wear-and-replacement and consistency of cementum annuli. Wild Soc Bull. 38 (1), 849-865 (2014).
  38. Montero, D., Izquierdo, M. S., Tort, L., Robaina, L., Vergara, J. M. High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata., juveniles. Fish Physiol Biochem. 20 (1), 53-60 (1999).
  39. Charbonnel, N., et al. Stress demographic decline: a potential effect mediated by impairment of reproduction and immune function in cyclic vole populations. Physiol Biochem Zool. 81 (1), 63-73 (2008).
  40. Crews, D., Gillette, R., Scarpino, S. V., Manikkam, M., Savenkova, M. I., Skinner, M. K. Epigenetic transgenerational inheritance of altered stress responses. Proc Natl Acad Sci. 109 (23), 9143-9148 (2012).
  41. Maher, J. M., Werner, E. E., Denver, R. J. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc R Soc Lond B Biol Sci. 280 (1758), 20123075 (2013).

Перепечатки и разрешения

Запросить разрешение на использование текста или рисунков этого JoVE статьи

Запросить разрешение

Смотреть дополнительные статьи

126

This article has been published

Video Coming Soon

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены