JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

开发了利用脑电图素作为无金属光催化剂合成含氮异循环的新途径。

摘要

由于含氮杂物是新药的重要图案,人们对含氮杂物的兴趣在合成社区中迅速扩大。传统上,它们是通过热循环反应合成的,而今天,由于温和高效的条件,光催化是首选。以这种焦点,一种新的光催化方法合成含氮异循环是高度需要的。在这里,我们报告一个协议,即脑孢子素的生物合成,它可以作为无金属光催化器。然后,我们演示了通过用 KSCN 废除阿佐克酮合成含氮异循环 1,2,3-硫二氮的脑膜-光催化协议,以及通过温和条件下的亚生酮循环化合成 1,4,5,6-四氢化物 [4]2] 的合成。因此,微生物发酵法与有机合成之间以温和、经济、环保和可持续的方式架起一座桥梁。

引言

含氮杂物不仅成为生物活性植物中各种天然产品的重要骨架,而且是农用化学品和药物分子1、2的合成前因此备受关注。在各种N-异环中,1,2,3-硫化物,3,4和1,4,5,6-四3氢酶5,66是最重要的分子,在合成化学中用作5多功能中间体(图1)。由于其功能群的改性总是诱发独特的药理活性,因此,他们广泛致力于制定有效的氮气异循环合成策略,它们大多通过热细胞载反应,,7、8、9、108合成79目前,为满足可持续发展和绿色化学的要求,光催化已发挥十一、十二,等十分重要和优势,包括,,,,有效15、16、17、18、19和避免活化15,16181720、21的化学试剂。19 21功能强大、多功能的四单元中间体, azoalkenes (1,2-diaza-1,3-dienes)22,,23,,24,,25,,26,,27,,28,,29,已被使用作为前体在金属为基础的Ru(bpy)3Cl2-光催化反应与高效率的卤素氢化物和酮碳素30的环烷。此外,它也用于无金属Eosin Y光催化系统,但只提供7%的产能所需的产品。由于无金属光催化剂比过渡金属基光催化剂具有很大的优势,在环境因素以及更便宜的价格18,19,,19这是非常重要的,开发新的无金属光催化系统合成N-异轮。

Cercosporin31,,,32,,33,,34,,35,,氯林36,,37,,38,,39,,40,elsinochrome41和 phleichrome42,,43图 2)属于苯基诺酮类色素 (PQPs) 在自然界中, 由于其在紫外线区域的强烈吸收和光敏化36、44、45、46、47的独特特性,已广泛研究其光物理和光生物学特性46应用于光动力治疗和光物理诊断,44辐照后,这些PQP可以提示兴奋状态,然后产生活性物种通过能量转移(EnT)和电子转移(ET)35,38,44,48,49,50,51,52,53,54。35,38,44,48,49,50,51,52,53,54因此,我们设想,这些天然PQPs可以用作"无金属"光催化剂,以推动有机反应,这很少被调查55,56,57,58,59。55,56,57,58,59

在这里,我们报告液体发酵中脑孢素的生物合成协议,然后将其作为无金属光催化剂应用于阿佐克内和 KSCN 的 [4]]1] 无效反应, 以及[4][2]环化阿佐克尼,分别提供1,2,3-硫化物和1,4,5,6-四氢化物,在温和条件下效率高(图3)。

Access restricted. Please log in or start a trial to view this content.

研究方案

注:\-Halo-N-acyl-hydrazone)是按照公布的程序60编制的αN所有溶剂和其他化学试剂均从商业来源获得,无需进一步纯化。我们首先将α-Halo-N-acyl-hydrazone的合成和脑孔磷酸的生物合成描述为无金属光催化剂。 αN接下来,我们说明了用于合成1,2,3-硫化物和1,4,5,6-四氢化物的脑膜-光催化反应的协议。

注意:所有操作应佩戴手套、实验室外套和护目镜,谨慎进行。强烈建议仔细阅读这些反应和纯化过程中使用的每个化学品和溶剂的 MSDS。化学品可以在长凳上平衡。所有有机反应应在烟气罩中设置,净化过程也应在烟气罩中进行。

1. 准备+- 哈洛 -N- acyl - 海德拉区

  1. 将 10 mmol 的酮和 10 mmol 的苯甲酸烷重为烧瓶中。
  2. 在烧瓶中加入20 mL的CH 3OH。
  3. 为烧瓶配备橡胶塞和搅拌棒。
  4. 将0.25 mL的HCl缓慢注入混合物中。
  5. 在室温下将烧瓶孵育4小时。
  6. 通过过滤收集反应后沉淀物,用丙酮清洗。
  7. 通过真空干燥产品,通过 NMR 进行识别。

2. 制备陶瓷素

  1. 用 1 L 的 S-7 介质为 3 L 摇瓶充电。
  2. 将产生塞科斯波林的菌株56接种到奶昔瓶中。
  3. 在135 r/min、25°C的光条件下培养混合物,2周。
  4. 使用真空泵对发酵汤进行真空过滤,以获得上经剂和颗粒。
  5. 收集颗粒,并在冷冻干燥机中干燥。
  6. 用3 x 50 mL的二氯甲烷分别提取颗粒和上总比。
  7. 将有机相混合,用水洗涤2-3次。
  8. 将有机相集中在真空中。
  9. 用分析性甲醇重新溶解残留物,并通过0.18μm有机微滤膜过滤。
  10. 使用 Sephadex LH-20 列净化脑孢素,并由 HPLC 进行识别。

3. 准备1,2,3-蒂亚亚佐莱

  1. 称高- 哈洛-N- acyl - 海德拉区 (0.2 mmol, 1.0 eq),1毫克的塞高素(0.002 mmol,0.01 equiv.),27毫克tBuOK(1.2 equiv)和39毫克的KSCN(2 equiv)放入一个10 mL施伦克浴缸,配备橡胶塞和搅拌棒。
  2. 用 O 2 清除施伦克管三次。
  3. 将干 CH3CN (2 mL) 注入施伦克管。
  4. 将施伦克管从底部的 5 W 蓝色 LED 引导 16 小时。
  5. 用 4 x 15 mL 的饱和 NaCl 溶液进行洗涤,并结合水相。
  6. 用4 x 15 mL乙酸乙酯重新提取水相。
  7. 结合有机相和干燥与无水娜2SO4
  8. 用真空蒸发器去除溶剂。
  9. 通过硅胶柱色谱(吸水剂,石油:乙酸乙酯 = 10:1)净化产品3,并由 NMR 鉴定。

4. 准备1,4,5,6-四氢二丁

  1. 将α-Halo-N-acyl-hydrazone(0.5 mmol)、2.7毫克的脑孢菌素(0.01 equiv)和195毫克的Cs2CO3(1.2 equiv)称重到装有橡胶塞和搅拌棒的10 mL施伦克浴缸中。 αN
  2. 用 N2清除施伦克管三次。
  3. 将 CH3CN/H2O (10:1, 2 mL) 注入施伦克管。
  4. 将施伦克管从底部的 5 W 蓝色 LED 引导 16 小时。
  5. 用 4 x 15 mL 的饱和 NaCl 溶液进行洗涤,并结合水相。
  6. 用4 x 15 mL乙酸乙酯重新提取水相。
  7. 结合有机相和干燥与无水娜2SO4
  8. 用真空蒸发器去除溶剂。
  9. 通过硅胶柱色谱(吸水、石油:乙酸乙酯 = 10:1)净化产品4,并由 NMR 鉴定。

Access restricted. Please log in or start a trial to view this content.

结果

合成+ -哈洛 -N- acyl - 海德拉酮:它们根据议定书1合成。

脑孢素合成:它根据议定书2进行合成和纯化。1H NMR (400 MHz, CDCl3): μ ppm 14.82 (s, 2H, ArH), 7.06 (s, 2H, ArH), 5.57 (s, 2H, CH2), 4.20 (s, 6H, 2OCH 3 ), 3.62-3.57 (m, 2H, CH2), 3.42-3.37 ?...

Access restricted. Please log in or start a trial to view this content.

讨论

含氮的杂循环是许多新药的重要图案,传统上是通过热囊肿反应合成的。由于兴趣很大,一种新的光催化方法合成这些化合物是高度期望的。为了利用塞高素优异的光敏特性,我们应用脑电图素作为无金属光催化剂,在两类去功能化反应中合成含氮异循环。

首先,我们报告了在标准条件下用 KSCN 废除佐烷的酶协议 [4]1] 标准条件下: α-halo-N- acyl - hydrazone 1 (...

Access restricted. Please log in or start a trial to view this content.

披露声明

作者没有什么可透露的。

致谢

我们感谢中国国家重点研发项目(2018YFA0901700),江苏省自然科学基金(赠款第1号)。BK20160167)、"千人计划"(青年专业人才)、中央高校基础研究基金(51712B)、国家轻工技术与工程一级学科计划(LITE2018-14)和江苏省博士后资助基金会(2018K153C)。

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
2,4'-DibromoacetophenoneENERGYD0500850050
2'-bromo-4-chloroacetophenoneENERGYA0500400050
2-Bromo-4'-fluoroacetophenoneENERGYA050037-5g
2-BromoacetophenoneENERGYA0500870050
4-BromobenzhydrazideENERGYB0103390010
4-ChlorobenzhydrazideENERGYD0511130050
4-FluorobenzhydrazideENERGYB010461-5g
5 W blue LEDPHILIPS29237328756
Benzoyl hydrazineENERGYD0500610250
CH2Cl2SINOPHARM80047360
CH3CNSINOPHARMS3485101
CH3OHSINOPHARM100141190
Cs2CO3ENERGYE060058-25g
Ethyl acetateSINOPHARM40065986
freeze dryerLABCONCO7934074
HPLCAgilent1260 Infinity II
KSCNENERGYE0104021000
Na2SO4SINOPHARM51024461
organic microfiltration membraneSINOPHARM92412511
S-7 mediumGluose 1g; Fructose 3g; Sucrose 6g; Sodium acetate 1g; Soytone 1g; Phenylalanine 5mg; Sodium benzoate 100mg; 1M KH2P04 buffer ph6.8; Biotin 1mg; Ca(NO3)2 6.5mg; Pyridoxal 1mg; Calcium pantothenate 1mg; Thiamine 1mg; MnCl2 5mg; FeCl3 2mg; Cu(NO3)2 1mg; MgSO4 3.6mg; ZnSO4 2.5mg
Schlenk tubSynthwareF891910
sephadex LH-20 columnGE17009001
shakerLab ToolsBSH00847
silica gelENERGYE011242-1kg
tBuOKENERGYE0610551000
vacuum bumpGreatwallSHB-III
vacuum evaporator

参考文献

  1. Majumdar, K. C., Chattopadhyay, S. K. Heterocycles in Natural Product Synthesis. ed, , 1st ed, Wiley-VCH. (2011).
  2. Taylor, R. D., MacCoss, M., Lawson, A. D. Rings in drugs. Journal of Medicinal Chemistry. 57 (14), 5845-5859 (2014).
  3. Bakulev, V. A., Dehaen, W. The Chemistry of 1,2,3-Thiadiazoles. , John Wiley & Sons. (2004).
  4. Dong, W. L., Liu, Z. X., Liu, X. H., Li, Z. M., Zhao, W. G. Synthesis and antiviral activity of new acrylamide derivatives containing 1,2,3-thiadiazole as inhibitors of hepatitis B virus replication. European Journal of Medicinal Chemistry. 45 (5), 1919-1926 (2010).
  5. Combs, D. W., Reese, K., Phillips, A. Nonsteroidal Progesterone-Receptor Ligands. 1. 3-Aryl-1-Benzoyl-1,4,5,6-Tetrahydropyridazines. Journal of Medicinal Chemistry. 38 (25), 4878-4879 (1995).
  6. Combs, D. W., et al. Nonsteroidal Progesterone-Receptor Ligands. 2. High-Affinity Ligands with Selectivity for Bone Cell Progesterone Receptors. Journal of Medicinal Chemistry. 38 (25), 4880-4884 (1995).
  7. Xu, S. L., Chen, R. S., Qin, Z. F., Wu, G. P., He, Z. J. Divergent Amine-Catalyzed [4+2] Annulation of Morita-Baylis-Hillman Allylic Acetates with Electron-Deficient Alkenes. Organic Letters. 14 (4), 996-999 (2012).
  8. Ishikawa, T., Kimura, M., Kumoi, T., Iida, H. Coupled Flavin-Iodine Redox Organocatalysts: Aerobic Oxidative Transformation from N-Tosylhydrazones to 1,2,3-Thiadiazoles. ACS Catalysis. 7 (8), 4986-4989 (2017).
  9. Chen, J. F., Jiang, Y., Yu, J. T., Cheng, J. TBAI-Catalyzed Reaction between N-Tosylhydrazones and Sulfur: A Procedure toward 1,2,3-Thiadiazole. Journal of Organic Chemistry. 81 (1), 271-275 (2016).
  10. Liu, B. B., Bai, H. W., Liu, H., Wang, S. Y., Ji, S. J. Cascade Trisulfur Radical Anion (S3(*-)) Addition/Electron Detosylation Process for the Synthesis of 1,2,3-Thiadiazoles and Isothiazoles. Journal of Organic Chemistry. 83 (17), 10281-10288 (2018).
  11. Staveness, D., Bosque, I., Stephenson, C. R. J. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer. Accounts of Chemical Research. 49 (10), 2295-2306 (2016).
  12. Corrigan, N., Shanmugam, S., Xu, J. T., Boyer, C. Photocatalysis in organic and polymer synthesis. Chemical Society Reviews. 45 (22), 6165-6212 (2016).
  13. Shaw, M. H., Twilton, J., MacMillan, D. W. C. Photoredox Catalysis in Organic Chemistry. Journal of Organic Chemistry. 81 (16), 6898-6926 (2016).
  14. Marzo, L., Pagire, S. K., Reiser, O., Konig, B. Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angewandte Chemie-International Edition. 57 (32), 10034-10072 (2018).
  15. Prier, C. K., Rankic, D. A., MacMillan, D. W. C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews. 113 (7), 5322-5363 (2013).
  16. Reckenthaler, M., Griesbeck, A. G. Photoredox Catalysis for Organic Syntheses. Advanced Synthesis & Catalysis. 355 (14-15), 2727-2744 (2013).
  17. Nicewicz, D. A., Nguyen, T. M. Recent Applications of Organic Dyes as Photoredox Catalysts in Organic Synthesis. ACS Catalysis. 4 (1), 355-360 (2014).
  18. Pitre, S. P., McTiernan, C. D., Scaiano, J. C. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives. Accounts of Chemical Research. 49 (6), 1320-1330 (2016).
  19. Romero, N. A., Nicewicz, D. A. Organic Photoredox Catalysis. Chemical Reviews. 116 (17), 10075-10166 (2016).
  20. Albini, A., Fagnoni, M. Photochemically-Generated Intermediates in Synthesis. , John Wiley & Sons. (2013).
  21. Chen, J. R., Hu, X. Q., Lu, L. Q., Xiao, W. J. Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond. Accounts of Chemical Research. 49 (9), 1911-1923 (2016).
  22. Attanasi, O. A., et al. Cultivating the Passion to Build Heterocycles from 1,2-Diaza-1,3-dienes: the Force of Imagination. European Journal of Organic Chemistry. 19, 3109-3127 (2009).
  23. Attanasi, O. A., Filippone, P. Working twenty years on conjugated azo-alkenes (and environs) to find new entries in organic synthesis. Synlett. 10, 1128-1140 (1997).
  24. Deng, Y., Pei, C., Arman, H., Dong, K., Xu, X., Doyle, M. P. Syntheses of Tetrahydropyridazine and Tetrahydro-1,2-diazepine Scaffolds through Cycloaddition Reactions of Azoalkenes with Enol Diazoacetates. Organic Letters. 18 (22), 5884-5887 (2016).
  25. Guo, C., Sahoo, B., Daniliuc, C. G., Glorius, F. N-heterocyclic carbene catalyzed switchable reactions of enals with azoalkenes: formal [4+3] and [4+1] annulations for the synthesis of 1,2-diazepines and pyrazoles. Journal of American Chemistry Society. 136 (50), 17402-17405 (2014).
  26. Attanasi, O. A., et al. Interceptive [4+1] annulation of in situ generated 1,2-diaza-1,3-dienes with diazo esters: direct access to substituted mono-, bi-, and tricyclic 4,5-dihydropyrazoles. Journal of Organic Chemistry. 79 (17), 8331-8338 (2014).
  27. Li, J., Huang, R., Xing, Y. K., Qiu, G., Tao, H. Y., Wang, C. J. Catalytic Asymmetric Cascade Vinylogous Mukaiyama 1,6-Michael/Michael Addition of 2-Silyloxyfurans with Azoalkenes: Direct Approach to Fused Butyrolactones. Journal of the American Chemical Society. 137 (32), 10124-10127 (2015).
  28. Huang, R., Chang, X., Li, J., Wang, C. J. Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse Electron-Demand Aza-Diels-Alder/Nucleophilic Addition/Ring-Opening Reaction Involving 2-Methoxyfurans as Efficient Dienophiles. Journal of the American Chemical Society. 138 (12), 3998-4001 (2016).
  29. Tong, M. C., et al. Catalytic asymmetric synthesis of [2,3]-fused indoline heterocycles through inverse-electron-demand aza-Diels-Alder reaction of indoles with azoalkenes. Angew Chemistry International Edition English. 53 (18), 4680-4684 (2014).
  30. Yu, J. M., Lu, G. P., Cai, C. Photocatalytic radical cyclization of alpha-halo hydrazones with beta-ketocarbonyls: facile access to substituted dihydropyrazoles. Chemistry Communication (Camb.). 53 (38), 5342-5345 (2017).
  31. Kuyama, S., Tamura, T. Cercosporin. A pigment of Cercosporina kikuchii Matsumoto et Tomoyasu. I. Cultivation of fungus, isolation and purification of pigment. Journal of the American Chemical Society. 79 (21), 5725-5726 (1957).
  32. Kuyama, S., Tamura, T. Cercosporin. A pigment of Cercosporina kikuchii Matsumoto et Tomoyasu. II. Physical and chemical properties of cercosporin and its derivatives. Journal of the American Chemical Society. 79 (21), 5726-5729 (1957).
  33. Daub, M. E. Resistance of fungi to the photosensitizing toxin, cercosporin. Phytopathology. 77 (11), 1515-1520 (1987).
  34. Jalal, M. A. F., Hossain, M. B., Robeson, D. J., Vanderhelm, D. Cercospora-Beticola Phytotoxins - Cebetins That Are Photoactive, Mg2+-Binding, Chlorinated Anthraquinone Xanthone Conjugates. Journal of the American Chemical Society. 114 (15), 5967-5971 (1992).
  35. Daub, M. E., Ehrenshaft, M. The photoactivated Cercospora toxin cercosporin: Contributions to plant disease and fundamental biology. Annual Review of Phytopathology. 38 (1), 461-490 (2000).
  36. Diwu, Z. J., Lown, J. W. Photosensitization with Anticancer Agents. 14. Perylenequinonoid Pigments as New Potential Photodynamic Therapeutic Agents - Formation of Tautomeric Semiquinone Radicals. Journal of Photochemistry and Photobiology A-Chemistry. 69 (2), 191-199 (1992).
  37. Hu, Y. Z., An, J. Y., Jiang, L. J., Chen, D. W. Spectroscopic Study on the Photoreduction of Hypocrellin-a - Generation of Semiquinone Radical-Anion and Hydroquinone. Journal of Photochemistry and Photobiology A-Chemistry. 89 (1), 45-51 (1995).
  38. Hu, Y. Z., Jiang, L. J., Chiang, L. C. Characteristics of the reaction between semiquinone radical anion of hypocrellin A and oxygen in aprotic media. Journal of Photochemistry and Photobiology A-Chemistry. 94 (1), 37-41 (1996).
  39. Zhang, M. H., et al. Study of electron transfer interaction between hypocrellin and N,N-diethylaniline by UV-visible, fluorescence, electron spin resonance spectra and time-resolved transient absorption spectra. Journal of Photochemistry and Photobiology A-Chemistry. 96 (1-3), 57-63 (1996).
  40. He, Y. Y., An, J. Y., Jiang, L. J. pH Effect on the spectroscopic behavior and photoinduced generation of semiquinone anion radical of hypocrellin B. Dyes and Pigments. 41 (1-2), 79-87 (1999).
  41. Li, C., et al. Photophysical and photosensitive properties of Elsinochrome A. Chinese Science Bulletin. 51 (9), 1050-1054 (2006).
  42. So, K. K., et al. Improved production of phleichrome from the phytopathogenic fungus Cladosporium phlei using synthetic inducers and photodynamic ROS production by phleichrome. Journal of Bioscience and Bioengineering. 119 (3), 289-296 (2015).
  43. Hudson, J. B., Imperial, V., Haugland, R. P., Diwu, Z. Antiviral activities of photoactive perylenequinones. Photochemistry and Photobiology. 65 (2), 352-354 (1997).
  44. Diwu, Z. J., Lown, J. W. Photosensitization by Anticancer Agents. 12. Perylene Quinonoid Pigments, a Novel Type of Singlet Oxygen Sensitizer. Journal of Photochemistry and Photobiology A-Chemistry. 64 (3), 273-287 (1992).
  45. Diwu, Z. J., Zimmermann, J., Meyer, T., Lown, J. W. Design, Synthesis and Investigation of Mechanisms of Action of Novel Protein-Kinase-C Inhibitors - Perylenequinonoid Pigments. Biochemical Pharmacology. 47 (2), 373-385 (1994).
  46. Guedes, R. C., Eriksson, L. A. Photophysics, photochemistry, and reactivity: Molecular aspects of perylenequinone reactions. Photochemical & Photobiological Sciences. 6 (10), 1089-1096 (2007).
  47. Mulrooney, C. A., O'Brien, E. M., Morgan, B. J., Kozlowski, M. C. Perylenequinones: Isolation, Synthesis, and Biological Activity. European Journal of Organic Chemistry. (21), 3887-3904 (2012).
  48. Daub, M. E., Hangarter, R. P. Light-induced production of singlet oxygen and superoxide by the fungal toxin, cercosporin. Plant Physiololgy. 73 (3), 855-857 (1983).
  49. Daub, M. E., Leisman, G. B., Clark, R. A., Bowden, E. F. Reductive Detoxification as a Mechanism of Fungal Resistance to Singlet Oxygen-Generating Photosensitizers. Proceedings of the National Academy of Sciences of the United States of America. 89 (20), 9588-9592 (1992).
  50. Leisman, G. B., Daub, M. E. Singlet Oxygen Yields, Optical-Properties, and Phototoxicity of Reduced Derivatives of the Photosensitizer Cercosporin. Photochemistry Photobiology. 55 (3), 373-379 (1992).
  51. Bilski, P., Li, M. Y., Ehrenshaft, M., Daub, M. E., Chignell, C. F. Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochemistry Photobiology. 71 (2), 129-134 (2000).
  52. Xing, M. Z., Zhang, X. Z., Sun, Z. L., Zhang, H. Y. Perylenequinones act as broad-spectrum fungicides by generating reactive oxygen species both in the dark and in the light. Journal of Agricultural and Food Chemistry. 51 (26), 7722-7724 (2003).
  53. Weng, M., Zhang, M. H., Shen, T. Electron transfer interaction between hypocrellin A and biological substrates and quantitative analysis of superoxide anion radicals. Journal of the Chemical Society-Perkin Transactions. 2 (11), 2393-2397 (1997).
  54. Daub, M. E., Li, M., Bilski, P., Chignell, C. F. Dihydrocercosporin singlet oxygen production and subcellular localization: A possible defense against cercosporin phototoxicity in Cercospora. Photochemistry and Photobiology. 71 (2), 135-140 (2000).
  55. Zhang, S. W., et al. Perylenequinonoid-catalyzed photoredox activation for the direct arylation of (het)arenes with sunlight. Organic & Biomolecular Chemistry. 17 (17), 4364-4369 (2019).
  56. Zhang, Y., et al. Perylenequinonoid-Catalyzed [4+1]-and [4+2]-Annulations of Azoalkenes: Photocatalytic Access to 1, 2, 3-Thiadiazole/1, 4, 5, 6-Tetrahydropyridazine Derivatives. Journal of Organic Chemistry. 84 (12), 7711-7721 (2019).
  57. Li, J., et al. Cercosporin-Bioinspired Selective Photooxidation Reactions under Mild Conditions. Green Chemistry. 21 (22), 6073-6081 (2019).
  58. Tang, Z., et al. Cercosporin-bioinspired photoreductive activation of aryl halides under mild conditions. Journal of Catalysis. 380, 1-8 (2019).
  59. Li, J., Bao, W., Zhang, Y., Rao, Y. Cercosporin-photocatalyzed sp3 (C-H) Activation for the Synthesis of Pyrrolo[3,4-c]quinolones. Organic & Biomolecular Chemistry. 17 (40), 8958-8962 (2019).
  60. Wang, F., Chen, C., Deng, G., Xi, C. J. Concise Approach to Benzisothiazol-3(2H)-one via Copper-Catalyzed Tandem Reaction of o-Bromobenzamide and Potassium Thiocyanate in Water. Journal of Organic Chemistry. 77 (8), 4148-4151 (2012).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

161 1 2 3 1 4 5 6

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。