JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本文展示了一种有效的手术方法,用于通过小切口在小鼠中建立急性缺血。大多数研究小组都可以应用这种方法,而无需任何实验室升级。

摘要

本研究的目的是介绍和评估一种改进的手术方法,以诱导小鼠急性缺血,该方法可以在大多数动物实验室中实施。与传统的股动脉双结扎(DLFA)方法相反,在右侧腹股沟区域做了一个较小的切口,以暴露股骨近端动脉(FA)以执行DLFA。然后,使用7-0缝合线,将切口拖到膝盖区域以暴露远端FA.使用双侧后肢的磁共振成像(MRI)来检测手术后的FA闭塞。在手术后0,1,3,5和7天,使用Tarlov量表对后肢的功能恢复进行视觉评估和分级。在DLFA后7天对动物实施安乐死后进行组织学评估。在十只ApoE-/- 小鼠的右腿上成功进行了手术,在随后的观察中没有小鼠死亡。所有10只小鼠的切口大小小于5毫米(4.2±0.63毫米)。MRI结果显示缺血侧的FA血流明显受阻。Tarlov量表结果显示,术后后肢功能显著下降,并在接下来的7天内缓慢恢复。组织学评估显示缺血侧有明显的炎症反应,缺血性后肢微血管密度降低。总之,本研究引入了一种使用微型切口的改良技术,以使用DLFA进行后肢缺血(HLI)。

引言

对于外周动脉疾病(PAD)等血管疾病的研究,临床前动物模型的需求尚未得到满足。尽管在诊断和治疗方面取得了先进的发展,但在2018年有超过2亿名PAD患者1,并且他们的人数还在不断增加。虽然已经描述了几种新的治疗方法2,3,4,5,6,7,但将这些治疗方式成功转化为临床应用仍然是一项艰巨的任务。因此,需要可靠且相关的体内实验模型来模拟人类疾病状况,以研究这些治疗PAD6,7的新治疗方法的潜在机制和效率。

高脂血症和动脉粥样硬化(AS)是PAD发展的主要危险因素。ApoE-/-小鼠(高脂肪饮食)表现出异常的脂肪代谢和高脂血症,随后发展出动脉粥样硬化斑块,使ApoE-/-小鼠成为模拟临床相关PAD的最佳选择。临床前HLI动物模型是通过股动脉双结扎(DLFA)生成的,这是世界各地实验室中应用最广泛的方法8,9,10,11,12,13,14,15,以模拟急性慢性缺血。然而,这种方法通常需要一个相对较大和侵入性的切口。此外,它不可避免地导致动物(特别是小鼠)遭受疼痛损伤和炎症的增加,这也影响了随后的实验结果5,6,16,17。本文通过使用非常小的切口描述了APOE-/-小鼠的急性慢性HLI模型。

研究方案

注意:所有实验程序均根据EC指南EC 2010/63 / EU进行,并已获得德国当地立法(35-9185.81 / G[1]239 / 18)的批准。10只具有C57BL / 6J背景的雄性ApoE-/- 小鼠,重29.6-38.0g,在12小时的光/暗循环中饲养,并从8周龄开始随意喂食西方饮食(1.25%胆固醇和21%脂肪)和 随意 浇水12周。如下所述,在20周龄的小鼠上进行HLI。

1.在ApoE-/- 小鼠中诱导HLI

  1. 准备手术所需的设备和工具(见 材料表图1)。使用前通过高压灭菌对手术器械进行灭菌,并在手术过程中使用玻璃珠灭菌器。
  2. 在所有外科手术之前,皮下注射(S.C)咪达唑仑(5mg / kg),美托咪定(0.05mg / ml / kg)和芬太尼(0.5mg / kg)混合物麻醉小鼠。
    1. 麻醉开始后,在眼睛上使用兽医软膏以防止干燥,并确认前肢和后肢没有踏板退出反射。
  3. 然后将鼠标放在加热垫上,将核心体温保持在约37°C。 使用棉签和脱毛膏,小心地从右侧的后肢皮肤上去除毛发。
    注意:脱毛霜的使用量应足以覆盖后肢,特别是将要做切口的腹股沟区域。脱毛霜的使用时间应少于3分钟,随后应用湿润的棉签取出2至3次。
  4. 将鼠标置于解剖显微镜下加热垫上的仰卧位。使用皮肤防腐剂(见材料表)对小鼠皮肤进行消毒。之后,使用尖镊子和手术剪刀在腹股沟区域中间做一个约3-4毫米的切口。有关该过程的原理图,请参见图 2。
  5. 在细尖镊子的帮助下小心地取出皮下脂肪组织,以暴露股骨近端神经血管束。小心地使用细尖的镊子刺穿股鞘膜。使用用盐水润湿的棉签小心地将股动脉(FA)移离股神经(FN)和股静脉(FV)。
  6. 通过近端FA的两条7-0可吸收缝合线,并使用弹簧剪刀在两根领带之间横切FA结。
  7. 要暴露远端FA,请通过切口的下边缘通过7-0可吸收的缝合线,并将切口轻轻拖动到后肢膝盖右侧的区域。
  8. 小心地将皮下组织移到一边,露出神经血管束。使用细尖镊子刺穿股鞘膜,并从FV和FN中解剖FA。
  9. 通过两条7-0可吸收的缝合线穿过远端FA,并打双结。使用弹簧剪刀在两根领带之间横切FA。
    注意:没有在左肢上进行结扎,这在每只小鼠中起到了对照作用。
  10. 之后,使用6-0可吸收缝合缝合切口。将鼠标放在干净的笼子中的加热垫上,并继续监测其重要参数,直到恢复。提供术后镇痛药:丁丙诺啡.c(0.1 mg/kg体重,每8小时一次,持续48小时)。手术后48小时,在饮用水中给予安咪唑(24mg / 5mL水对应于200mg / kg的剂量,每日4次)。

2. 磁共振成像

注意:DLFA后一天,小鼠必须接受MRI扫描以评估FA阻塞。

  1. 将小鼠置于透明的诱导室中,并在环境空气中用1.5-2%异氟醚麻醉小鼠,直到失去矫正反射。
  2. 将鼠标放在装有咬合架的加热动物床上,并用激光控制系统定位在磁铁上。将体温保持在37±1°C。
  3. 在图像采集期间,在环境空气中用1.5-2%的异氟醚保持麻醉,并使用压力探头监测呼吸。
  4. 使用三维(3D)飞行时间(TOF)血管造影序列以横向切片方向获取图像,参数回波时间(TE)/重复时间(TR)/翻转角度(FA)= 2 ms / 12 ms / 13°,四个平均值,178 x 144的采集矩阵重建为256 x 192和121个切片,从而产生0.15 mm3的各向同性分辨率。为了抑制来自静脉的信号,在后肢远端放置饱和切片。

3. 临床评估和随访

  1. 使用功能评分Tarlov量表18,19估计手术后第1天,3天第5天和第7天的功能恢复(表1)。

4. 组织学评估

  1. 手术后七天,应用戊巴比妥注射液(115mg / kg)对小鼠实施安乐死。
  2. 通过左心室灌注含有1%多聚甲醛(PFA)的磷酸盐缓冲盐水(PBS)(每只小鼠100 mL)。在4°C下将小鼠的双侧腓肠肌(Gm)固定在4%PFA中过夜。
  3. 根据先前描述的协议20将样品嵌入石蜡中。
    1. 在切片机上切割4-5μm厚的石蜡包埋组织块。在圆形油漆刷的帮助下,将切割的纸巾部分放在保持在42°C的水浴中。
    2. 将显微镜载玻片以45°角插入水中,并小心地将其放置在要收集的切片组下方。
    3. 小心地将载玻片从水中抬起,让切片附着在载玻片上,并在37°C的台式培养箱中干燥过夜。
  4. 对石蜡切片进行苏木精/曙红(HE)染色。
    1. 将包含各部分的幻灯片放在幻灯片支架中。准备3个新鲜二甲苯容器,并将载玻片置于每个容器中5分钟以脱蜡部分。
    2. 通过将切片依次浸入96%,80%,70%,50%,30%乙醇和去离子水中5分钟来重新水化切片。
    3. 在苏木精溶液中染色10分钟。
    4. 将切片转移到去离子水容器中,然后置于流动的自来水中冲洗5分钟。
    5. 使用显微镜检查苏木精染色的强度。如果染色能够清楚地鉴定细胞核,请继续下一步。如果染色强度不便于识别细胞核或染色强度微弱,请将载玻片置于苏木精溶液中1分钟,重复用水洗涤(步骤4.4.4),然后再次检查。
    6. 在eosin-Y溶液中复染5分钟。
    7. 通过将切片依次浸入含有30%,50%,70%,80%和96%乙醇的容器中,连续10秒,使切片脱水。接下来,将切片依次放入三个新鲜二甲苯容器中,每个容器10秒。
    8. 将载玻片水平放置在显微载玻片存储图上,各部分朝上。在载玻片上添加足够的安装介质,并用盖玻片安装载玻片。
  5. 对石蜡切片进行免疫组化(IHC)染色。
    1. 重复脱蜡和补液步骤4.4.1-4.4.2。然后,将切片浸入装有10mM柠檬酸钠缓冲液(pH 6)的容器中,并将样品在微波炉中煮沸。
      注意:由于样品过热或过热会导致染色不一致,因此请将温度保持在沸点以下10分钟。
    2. 接下来,在台面上冷却部分30分钟。此后,在PBS中洗涤切片三次,持续5分钟。小心地干燥样品周围的区域,并使用疏水笔在样品周围画一个大圆圈。.
      注意:切勿触摸样品。用疏水笔标记会产生疏水边界,这有助于使用较小体积的抗体溶液。
    3. 通过将该部分置于PBS中的0.3%H2O2 中10分钟来淬灭内源性过氧化物酶活性。在室温下用400μL阻断缓冲液(PBS含有3%牛血清白蛋白和0.3%非离子洗涤剂)在室温下阻断切片1小时。
    4. 在PBS中洗涤切片5分钟。接下来,加入100-400μL稀释的抗CD31抗体(1:250)足以覆盖该部分。之后,在加湿室中在4°C下孵育切片过夜。
      注意:确保抗体溶液完全覆盖该部分。
    5. 除去一抗,并在PBS中洗涤切片三次,每次持续5分钟。
    6. 通过将1滴DAB浓缩物加入1mL DAB稀释剂来制备3,3'-二氨基联苯胺(DAB)混合物,并充分混合。之后,向切片中加入100-400μLDAB混合物,并用眼睛密切监测2分钟,直到观察到可接受的染色强度。
      注意:确保该部分完全被DAB混合物覆盖。
    7. 之后,在自来水中冲洗5分钟。按照步骤4.4.3-4.4.5中所述进行苏木精染色。
    8. 执行步骤4.4.6中描述的曙红-Y染色。执行步骤 4.4.7 中描述的脱水步骤。
    9. 使用安装介质用盖玻片安装截面。使用ImageJ估计5个随机选择的场(40x)中CD31阳性面积(%)的百分比,这些场可以被视为先前描述的微血管密度21。

5. 统计分析

  1. 使用统计分析软件将结果表示为均值±标准差,并对比较执行不成对的 t检验。认为 P < 0.05 具有统计显著性。

结果

ApoE-/-小鼠的特征
DLFA手术成功在10只小鼠身上进行,以建立HLI模型,手术后没有一只小鼠死亡。为了跟踪体重的变化,在DLFA手术(Pre-DLFA)和DLFA手术后7天(DLFA后)对小鼠进行称重。DLFA之前的权重范围为29.6至38.0克(平均34.74±2.47克),DLFA后的重量范围为26.5至34.1克(平均30.77±2.15克),明显低于DLFA之前的重量(P <0.05, 图3A)...

讨论

本研究报告了一种经过修改,简化且手术有效的方法,可在ApoE-/-小鼠中建立HLI模型,通过3-4mm切口在FA的近端和远端区域进行双连接,而无需任何实验室升级。与先前报道的小鼠HLI模型8,9,10,11,12,15,20,22,23,24的研究相比...

披露声明

作者声明,文章内容是在没有任何商业或财务关系的情况下撰写的,这些关系可以被解释为潜在的利益冲突。

致谢

作者感谢Viktoria Skude,Alexander Schlund和Felix Hörner的出色技术支持。

材料

NameCompanyCatalog NumberComments
10x Phosphate buffer salineRoth9143.1Used for haematoxylin and eosin stain and immunohistochemistry stain
30% H2O2Roth9681.2Used for immunohistochemistry stain
6-0 absorbable suturesPROLENE8776HUsed for stitching the skin
6-0 absroable suturePROLENEEP8706Used in Surgery
7-0 absorbable suturesPROLENEEH8021EUsed for ligating the artery
7-0 absroable suturePROLENEEP8755Used in Surgery
Acetic acidRoth6755.1Used for haematoxylin and eosin stain
Albumin Fraktion VRoth8076.2Used for immunohistochemistry stain
AutoclaveSystec GmbHSystec VX-150Used for the sterilisation of the surgical instruments
Axio vert A1 microscopeCarl ZeissZEISS Axio Vert.A1Used for viewing and taking the pictures from haematoxylin and eosin stain and immunohistochemistry stain
Bruker BioSpec 94/20 AVIIIBruker Biospin MRI GmbHN/AScan the femoral artery blockage
Buprenovet Sine 0,3mg/mlBayer AG2542 (WDT)Used in post operative pain-management. Dose - 0.1 mg/kg body weight every 8 hours for 48 h after operation
CD31 antibodyAbcamab28364Used for immunohistochemistry stain
Eosin Y solution 0.5 % in waterRothX883.1Used for haematoxylin and eosin stain
Epitope Retrieval Solution pH 6Leica Biosystems6046945Used for immunohistochemistry stain
Ethanol ≥ 99,5 %Roth5054.1Used for haematoxylin and eosin stain and immunohistochemistry stain
FentanylCayman Chemical437-38-7Used for anesthesia
Fine point forcepsMedixplus93-4505SUsed for separating the artery from nerve and vein
Glass bead sterilisatorSimon KellerType 250Used for sterilisation of the surgical instruments
Graefe iris forceps curvedVUBUVUBU-02-72207Used for blunt separation of skin and subcutaneous tissue
Hair Remover cream, Veet (with aloe vera)Reckitt Benckiser108972Remove hair from mice hind limbs
Heating plateSTÖRK-TRONIC7042092Keep the satble temperature of mice
HematoxylinRothT865.2Used for haematoxylin and eosin stain and immunohistochemistry stain
Leica surgical microscopeLeicaM651Enlarge the field of view to facilitate the operation
Liquid DAB+Substrate Chromogen SystemDakoK3468Used for immunohistochemistry stain
Male ApoE-/- miceCharles River LaboratoriesN/AUsed for establish the Peripheral artery disease mice model
MedetomidineCayman Chemical128366-50-7Used for anesthesia
Micro Needle HolderBlack & Black SurgicalB3B-18-8Holding the needle
Micro suture tying forcepsLife Saver Surgical IndustriesPS-MSF-145Used to assist in knotting during surgery
MicrotomeBiobaseBk-Mt268mUsed for tissue sectioning
MidazolamRatiopharm44856.01.00Used for anesthesia
MR-compatible Small Animal Monitoring and Gating System Model 1025SA InstrumentsN/amonitoring vital signs of animal during MRI scan
Octeniderm farblosSchülke & Mayr GmbH180212used for disinfection of the skin
Ointment for the eyes and noseBayer AG1578675Keep the eyes wet under the anesthesia
ParaformaldehydeRoth0335.1Used for fixation of the tissue
PentobarbitalNembutal76-74-4Used for anesthesia
SalineDeltaSelect1299.99.99Used for anesthesia
Spring handle scissors with fine, sharp tipsBlack & Black SurgicalB66167Used for cutting the artery
SuperCut ScissorsBlack & Black SurgicalB55992Used for cutting the skin
Triton X-100Roth9002-93-1Used for immunohistochemistry stain
Western diet, 1.25% Cholesterolssniff Spezialdiäten GmbHE15723-34Diet for the mice
XyleneRoth4436.3Used for haematoxylin and eosin stain and immunohistochemistry stain

参考文献

  1. Shu, J., Santulli, G. Update on peripheral artery disease: Epidemiology and evidence-based facts. Atherosclerosis. 275, 379-381 (2018).
  2. Tateishi-Yuyama, E., et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 360 (9331), 427-435 (2002).
  3. Wang, Z. X., et al. Efficacy of autologous bone marrow mononuclear cell therapy in patients with peripheral arterial disease. Journal of Atherosclerosis and Thrombosis. 21 (11), 1183-1196 (2014).
  4. Botham, C. M., Bennett, W. L., Cooke, J. P. Clinical trials of adult stem cell therapy for peripheral artery disease. Methodist Debakey Cardiovascular Journal. 9 (4), 201-205 (2013).
  5. van Weel, V., et al. Vascular endothelial growth factor overexpression in ischemic skeletal muscle enhances myoglobin expression in vivo. Circulation Research. 95 (1), 58-66 (2004).
  6. Olea, F. D., et al. Vascular endothelial growth factor overexpression does not enhance adipose stromal cell-induced protection on muscle damage in critical limb ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology. 35 (1), 184-188 (2015).
  7. Peeters Weem, S. M. O., Teraa, M., de Borst, G. J., Verhaar, M. C., Moll, F. L. Bone marrow derived cell therapy in critical limb ischemia: a meta-analysis of randomized placebo controlled trials. European Journal of Vascular and Endovascular Surgery. 50 (6), 775-783 (2015).
  8. Crawford, R. S., et al. Divergent systemic and local inflammatory response to hind limb demand ischemia in wild-type and ApoE-/- mice. Journal of Surgical Research. 183 (2), 952-962 (2013).
  9. Niiyama, H., Huang, N. F., Rollins, M. D., Cooke, J. P. Murine model of hindlimb ischemia. Journal of Visualized Experiments: JoVE. (23), e1035 (2009).
  10. Brenes, R. A., et al. Toward a mouse model of hind limb ischemia to test therapeutic angiogenesis. Journal of Vascular Surgery. 56 (6), 1669-1679 (2012).
  11. Peck, M. A., et al. A functional murine model of hindlimb demand ischemia. Annals of Vascular Surgery. 24 (4), 532-537 (2010).
  12. Lejay, A., et al. A new murine model of sustainable and durable chronic critical limb ischemia fairly mimicking human pathology. European Journal of Vascular and Endovascular Surgery. 49 (2), 205-212 (2015).
  13. Nagase, H., Yao, S., Ikeda, S. Acute and chronic effects of exercise on mRNA expression in the skeletal muscle of two mouse models of peripheral artery disease. PLoS One. 12 (8), 0182456 (2017).
  14. Fu, J., et al. Hydrogen molecules (H2) improve perfusion recovery via antioxidant effects in experimental peripheral arterial disease. Molecular Medicine Reports. 18 (6), 5009-5015 (2018).
  15. Yu, J., Dardik, A. A murine model of hind limb ischemia to study angiogenesis and arteriogenesis. Methods in Molecular Biology. 1717, 135-143 (2018).
  16. Pu, L. Q., et al. Enhanced revascularization of the ischemic limb by angiogenic therapy. Circulation. 88 (1), 208-215 (1993).
  17. Takeshita, S., et al. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. Journal of Clinical Investigation. 93 (2), 662-670 (1994).
  18. Tarlov, I. M. Spinal cord compression studies. III. Time limits for recovery after gradual compression in dogs. AMA Archives of Neurology and Psychiatry. 71 (5), 588-597 (1954).
  19. Westvik, T. S., et al. Limb ischemia after iliac ligation in aged mice stimulates angiogenesis without arteriogenesis. Journal of Vascular Surgery. 49 (2), 464-473 (2009).
  20. Hellingman, A. A., et al. Variations in surgical procedures for hind limb ischaemia mouse models result in differences in collateral formation. European Journal of Vascular and Endovascular Surgery. 40 (6), 796-803 (2010).
  21. Liu, Q., et al. CRISPR/Cas9-mediated hypoxia inducible factor-1α knockout enhances the antitumor effect of transarterial embolization in hepatocellular carcinoma. Oncology Reports. 40 (5), 2547-2557 (2018).
  22. Padgett, M. E., McCord, T. J., McClung, J. M., Kontos, C. D. Methods for acute and subacute murine hindlimb ischemia. Journal of Visualized Experiments: JoVE. (112), e54166 (2016).
  23. Pellegrin, M., et al. Experimental peripheral arterial disease: new insights into muscle glucose uptake, macrophage, and T-cell polarization during early and late stages. Physiological Reports. 2 (2), 00234 (2014).
  24. Sun, Z., et al. VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale. 5 (15), 6857-6866 (2013).
  25. Craige, S. M., et al. NADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation. Circulation. 124 (6), 731-740 (2011).
  26. Kant, S., et al. Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis. Nature Communications. 10 (1), 4223 (2019).
  27. Chevalier, J., et al. Obstruction of small arterioles in patients with critical limb ischemia due to partial endothelial-to-mesenchymal transition. iScience. 23 (6), 101251 (2020).
  28. Kosmac, K., et al. Correlations of calf muscle macrophage content with muscle properties and walking performance in peripheral artery disease. Journal of the American Heart Association. 9 (10), 015929 (2020).
  29. Mohiuddin, M., et al. Critical limb ischemia induces remodeling of skeletal muscle motor unit, myonuclear-, and mitochondrial-domains. Scientific Reports. 9 (1), 9551 (2019).
  30. Ministro, A., et al. Assessing therapeutic angiogenesis in a murine model of hindlimb ischemia. Journal of Visualized Experiments: JoVE. (148), e59582 (2019).
  31. Kilarski, W. W., Samolov, B., Petersson, L., Kvanta, A., Gerwins, P. Biomechanical regulation of blood vessel growth during tissue vascularization. Nature Medicine. 15 (6), 657-664 (2009).
  32. Portou, M. J., et al. Hyperglycaemia and ischaemia impair wound healing via Toll-like receptor 4 pathway activation in vitro and in an experimental murine model. European Journal of Vascular and Endovascular Surgery. 59 (1), 117-127 (2020).
  33. Dokun, A. O., et al. A quantitative trait locus (LSq-1) on mouse chromosome 7 is linked to the absence of tissue loss after surgical hindlimb ischemia. Circulation. 117 (9), 1207-1215 (2008).
  34. Hazarika, S., et al. MicroRNA-93 controls perfusion recovery after hindlimb ischemia by modulating expression of multiple genes in the cell cycle pathway. Circulation. 127 (17), 1818-1828 (2013).
  35. Fan, W., et al. mTORC1 and mTORC2 play different roles in the functional survival of transplanted adipose-derived stromal cells in hind limb ischemic mice via regulating inflammation in vivo. Stem Cells. 31 (1), 203-214 (2013).
  36. Terry, T., et al. CD34(+)/M-cadherin(+) bone marrow progenitor cells promote arteriogenesis in ischemic hindlimbs of ApoE(-)/(-) mice. PLoS One. 6 (6), 20673 (2011).
  37. Kwee, B. J., et al. Treating ischemia via recruitment of antigen-specific T cells. Science Advances. 5 (7), (2019).
  38. Nakada, M. T., et al. Clot lysis in a primate model of peripheral arterial occlusive disease with use of systemic or intraarterial reteplase: addition of abciximab results in improved vessel reperfusion. Journal of Vascular and Interventional Radiology: JVIR. 15 (2), 169-176 (2004).
  39. Carr, A. N., et al. Efficacy of systemic administration of SDF-1 in a model of vascular insufficiency: support for an endothelium-dependent mechanism. Cardiovascular Research. 69 (4), 925-935 (2006).
  40. Del Giudice, C., et al. Evaluation of a new model of hind limb ischemia in rabbits. Journal of Vascular Surgery. 68 (3), 849-857 (2018).
  41. Liddell, R. P., et al. Endovascular model of rabbit hindlimb ischemia: a platform to evaluate therapeutic angiogenesis. Journal of Vascular and Interventional Radiology: JVIR. 16 (7), 991-998 (2005).
  42. Aboyans, V., et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). European Heart Journal. 39 (9), 763-816 (2018).
  43. Lo Sasso, G., et al. The Apoe(-/-) mouse model: a suitable model to study cardiovascular and respiratory diseases in the context of cigarette smoke exposure and harm reduction. Journal of Translational Medicine. 14 (1), 146 (2016).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

171 ApoE

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。