登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本方案描述了啮齿动物中克罗恩病样结肠炎模型的发展。透壁炎症导致TNBS滴注部位狭窄,并且在狭窄近端的节段观察到机械性肿大。这些变化允许研究结肠炎的机械应力。

摘要

炎症性肠病(IBD)如克罗恩病(CD)是胃肠道的慢性炎症性疾病,在欧洲和美国影响约20/1,00,000。克罗恩病的特征是透壁炎症、肠纤维化和腔内狭窄。虽然抗炎疗法可能有助于控制炎症,但它们对克罗恩病的纤维化和狭窄没有疗效。克罗恩病的发病机制尚不清楚。目前的研究主要集中在描绘失调的肠道免疫反应机制上。虽然CD相关的透壁炎症,肠纤维化和腔内狭窄都代表对肠壁的机械应力,但机械应力在CD中的作用尚未明确定义。为了确定机械应力在克罗恩病中是否起独立的致病作用,已经开发了TNBS诱导的啮齿动物CD样结肠炎模型方案。这种TNBS诱导的透壁炎症和纤维化模型类似于结肠中CD的病理特征。它是由结肠内将TNBS滴注到成年Sprague-Dawley大鼠的远端结肠中诱导的。在该模型中,透壁炎症导致TNBS滴注部位(站点I)狭窄。在滴注部位近端(P位点)的部位观察到机械性膨胀,代表机械应力但不可见炎症。炎症远端的结肠部分(D位点)既不发炎也不出现机械应激。在不同位点(P,I和D)观察到基因表达,免疫反应,纤维化和平滑肌生长的独特变化,突出了机械应力的深远影响。因此,这种CD样结肠炎模型将帮助我们更好地了解CD的致病机制,特别是机械应力和机械应力诱导的基因表达在CD免疫失调,肠纤维化和组织重塑中的作用。

引言

炎症性肠病(IBD),包括溃疡性结肠炎(UC)和克罗恩病(CD),其特征在于胃肠道(GI)的慢性炎症。它影响约1-2百万美国人1。据估计,美国IBD治疗的年度成本为118亿美元。与溃疡性结肠炎不同,克罗恩病的特征是透壁性炎症和狭窄形成23。狭窄形成(狭窄)见于高达 70% 的克罗恩病患者3 ,可能由透壁炎症(炎性狭窄)或肠纤维化(纤维化狭窄)引起 45。肠纤维化的特征在于过度的胶原沉积和其他细胞外基质(ECM),平滑肌细胞(SMC)是参与该过程的主要间充质细胞类型之一34。与肥大相关的平滑肌增生是 CD6 中纤维化狭窄的另一个显著组织学变化。虽然克罗恩病患者的狭窄形成与慢性炎症有关,但除手术治疗外,没有有效的抗炎治疗26。然而,手术后复发率几乎为100%,给予足够的时间27。作为炎症反应,纤维化和SMC增生也可能在肠道中的非炎症性疾病(即肠梗阻)中发展89;据信,炎症依赖性和独立机制都与狭窄形成有关34。鉴于对炎症依赖性机制的广泛研究尚未转化为任何有效的狭窄形成疗法,因此需要研究炎症非依赖性机制在肠纤维化中的可能作用。

作为一种非炎症因子,与水肿、炎性细胞浸润、组织变形、纤维化和狭窄10,111213 相关的机械应力 (MS) 常见于 IBD,尤其是以透壁炎症为特征的 CD。机械应激在狭窄性克罗恩病中最为显著,其中炎症部位的狭窄(炎症性或纤维化)在局部组织中表现出机械应力,并导致梗阻部位近端的管腔扩张1014。先前的体外研究表明,机械应激会改变胃肠道组织中特定炎症介质(即COX-2,IL-6)81415和生长因子(即TGF-β)的基因表达,特别是肠道平滑肌细胞(SMC)16。最近的研究还发现,特定的促纤维化介质如结缔组织生长因子(CTGF)的表达对机械应力高度敏感1718。据推测,机械应力可能在CD相关炎症,纤维化和组织重塑中起独立的致病作用。然而,机械应力在克罗恩病肠道炎症、纤维化和平滑肌增生中的致病意义在很大程度上仍未得到探索。这可能部分是因为炎症是一个比机械应力更明显,研究得更好的过程。更重要的是,还没有明确定义的IBD动物模型来区分机械应力和炎症的影响。

本研究描述了一种啮齿动物模型,该模型由结肠内注射半抗原试剂2,4,6-三硝基苯磺酸(TNBS)1920诱导的克罗恩病样结肠炎,可用于研究机械应力在CD中的作用。发现TNBS滴注诱导远端结肠局部(长度约2cm)透壁炎症,伴有管腔狭窄(狭窄)。狭窄导致明显的肠胀(机械应力)1415 但在滴注部位近端的结肠节段不可见炎症。相反,狭窄部位远端的结肠节段既没有炎症也没有机械应力。在三个不同的位点观察到基因表达,炎症,纤维化和SMC增生的显着位点特异性变化。结果表明,机械应力,特别是机械应力诱导的基因表达,可能在克罗恩结肠炎的纤维化和增生中起关键作用。

研究方案

所有动物实验均根据德克萨斯大学医学分部(#0907051C)的机构动物护理和使用委员会进行。雄性或雌性Sprague-Dawley大鼠,约8-9周大,用于研究。

1. 动物准备

  1. 禁食大鼠24小时,并用泻药(肠道清洁剂,见 材料表)治疗它们过夜。
  2. 第二天,通过在TNBS给药期间将大鼠暴露于2%异氟醚以及1升/分钟的氧气,使用麻醉系统(参见 材料表)麻醉大鼠。检查反射或捏脚趾以确认麻醉。
  3. 根据体重准备新鲜的TNBS溶液。
    注意:TNBS - 使用250μL 40%乙醇中的65mg / kg体重。
  4. 将大鼠置于麻醉台上的仰卧位。为了诱导结肠炎,通过肛门插入医用级开放式聚氨酯导管,从肛门边缘插入约7-8厘米,并轻轻地将TNBS(在步骤1.3中制备)滴入结肠19。仅用250μL盐水施用假对照大鼠。
  5. 滴注TNBS或生理盐水后,将大鼠保持在仰卧和略微朝下的位置(~30°),肛门关闭2分钟,以帮助TNBS分布并避免溢出。
  6. 随意为大鼠提供食物和水7天,每天观察大鼠的体重,食物摄取,粪便和一般健康状况。

2. 组织制剂

  1. 在安乐死当天,使用CO2 吸入对大鼠实施安乐死,并确认安乐死伴宫颈脱位。
  2. 使用手术级剪刀和镊子打开大鼠腹部。
  3. 小心地取出整个结肠(肛管上方),并立即将结肠转移到冰冷的1x HBSS缓冲液中。
  4. 拉直缓冲区中的冒号,并使用标尺测量结肠长度。取尼龙线并在结肠周围圈,以测量对照和TNBS处理大鼠中结肠节段的外周。取全层组织进行组织学检查。
  5. 沿着肠系膜板切开结肠,并用HBSS缓冲液清洁结肠。根据前面描述的标准评估结肠的宏观炎症评分19 ,只需进行最小的修饰。
    注意:0 =正常粘膜;1 =局部充血,但没有糜烂或溃疡;2 =溃疡和狭窄(受影响区域<5毫米);3 =严重溃疡,瘢痕和狭窄(受累区域>5 mm)。
  6. 分别从TNBS处理的大鼠的P位点(炎症部位口腔边缘前2-3厘米的部分),I部位(炎症部位,通常距离结肠末端4-6厘米,TNBS被滴注到的地方)和D部位(炎症部位的流生边缘远端1-2厘米)收集结肠组织样本。
    注意:从每个片段中取出〜1-2 cm长的结肠组织。此外,将盐水处理大鼠的2cm长(距结肠末端约4-6cm)的结肠组织作为假对照(S)(图1)。
  7. 从每个部位采集组织样本进行全层制备,如果需要,分别采集粘膜/粘膜下层和外侧肌层,以及2122
  8. 首先在液氮中冷冻组织样品,然后将其储存在-80°C下,以储存长达一年并用于将来的目的(即RNA制备)。

3. 肠道炎症和纤维化的组织病理学评估

  1. 将全层结肠组织固定在10%福尔马林中48小时,然后转移到70%乙醇中24-48小时。
  2. 使用切片机切割5μm厚度的石蜡切片,分别用于苏木精和eosin(H&E)和Masson的三色染色剂61923 (见 材料表)。
  3. 使用配备兼容软件的高分辨率相机的正置显微镜采集和查看图像(参见 材料表)。
  4. 由两名独立研究人员对炎症和纤维化指数进行分级,包括根据先前描述的标准623 的胃肠道外科病理学家进行修改。有关分数 ,请参阅补充文件 1
  5. 在每个H&E染色标本的四个视图中测量每个横截面的圆形和纵向肌肉层的厚度和细胞数,并取每个标本的四个测量值的平均值。

4. RNA提取和定量RT-PCR

  1. 在RNA提取试剂盒的提取试剂中,从假对照和TNBS结肠炎大鼠的三个位点(P,I,D)中获得的切除的结肠组织均质化(参见 材料表)。
  2. 利用试剂盒从每个样品中分离RNA。在30μL无RNase水中洗脱RNA沉淀。
  3. 使用微量紫外可见分光光度计定量RNA浓度并检查纯度(参见 材料表)。
  4. 使用1μg总RNA使用RNA合成试剂盒合成cDNA2122 (参见 材料表)。
  5. 通过使用用于实时荧光定量PCR系统的商用PCR试剂盒,以50 ng cDNA为模板,IL-6探针和CTGF进行实时PCR,分析和量化基因表达水平(参见 材料表)。
  6. 使用对照基因18S rRNA对样品进行归一化,并利用获得的Cq值量化相对基因表达。

5. 统计分析

  1. 利用统计分析软件(见 材料表)比较假对照和TNBS结肠炎大鼠。
  2. p 值 < 0.05 视为具有统计显著性的1519
  3. 要检验两组之间的差异,请使用学生的 t 检验分析,如果比较超过两个组1519,则执行方差分析检验。

结果

结肠内滴注TNBS诱导的克罗恩样结肠炎的宏观视图
如图 1所示,大鼠的结肠内滴注TNBS诱导局部透壁炎症(长度约2厘米),在远端结肠的滴注部位增厚肠壁和狭窄的管腔(狭窄)(图1A)。TNBS滴注的部位称为位点I。由于透壁炎症和狭窄,炎症和机械应力都存在于I部位。I位点的狭窄导致TNBS滴注部位(P位点)近端的节段出现明显的管腔扩张...

讨论

TNBS诱导的结肠炎于1989年引入,自那时以来一直被用作克罗恩病的实验模型192023。该模型在啮齿动物中的显着特征包括发生透壁炎症,其与人类克罗恩病1920中发生的组织病理学病变非常相似。以前对该模型的研究主要集中在可见炎症部位(I位点)的粘膜层中的异常免疫反应

披露声明

作者报告没有利益冲突,也没有什么可披露的。

致谢

这项工作部分得到了NIH(R01 DK124611至XZS)和美国国防部(W81XWH-20-1-0681至XZS)的资助。组织学工作是在UTMB外科病理学实验室的帮助下完成的。

材料

NameCompanyCatalog NumberComments
ACT-1 Control Software Ver2.63NikonDXM1200F
C1000 Touch Thermal Cycler with 96-Well Fast Reaction ModuleBIO-RAD1851196
CFX96 Optical Reaction Module for Real-Time PCR SystemsBIO-RAD1845097
Dako Agilent Artisan Link Pro Special stainerDakoAR310
Dako-Agilent Masson's Trichrome Kit ref# AR173DakoAR173
DXM1200 Digital Color HR CameraNikonDXM1200
Eukaryotic 18S rRNA Endogenous ControlThermoFisher Scientific4352930E
E-Z AnesthesiaE-Z Systems Inc.EZ-155
GraphPad Prism 9GraphPad9.0.2 (161)
Hard-Shell 96-Well PCR Plates, low profile, thin wall, skirted, white/clearBIO-RADHSP9601
HBSS (Corning Hank's Balanced Salt Solution, 1x without calcium and magnesium)CORNING21-021-CV
HM 325 MicrotomeThermo Scientific23-900-667
IsofluranePiramalNDC 66794-017-10
LI-COR Odyssey Digital Imaging SystemLI-COR9120
Mastercycler epGradient Thermal Cycler with Control Panel 5340 Thermal CyclerEppendorf5341
Medical grade open end polyurethane catheterCovidien8890703013
NanoDrop 2000/2000c SpectrophotometersThermo Fisher ScientificND2000CLAPTOP
Nikon Eclipse E800 Upright MicroscopeNikonE800
Nitrocellulose/Filter Paper Sandwiches Pkg of 50, 0.45 μm, 7 x 8.5 cmBIO-RAD1620215
Polyethylene Glycol 3350, Osmotic LaxativeMiralaxC8175Dose: 17g in 226 mL of water
RNeasy Mini Kit (250)
250 RNeasy Mini Spin Columns, Collection Tubes (1.5 mL and 2 mL), RNase-free Reagents and Buffers
QIAGEN74106
SuperScript III First-Strand Synthesis SystemThermoFisher Scientific18080051
TaqMan Gene Expression Assays Rn00573960_g1 CTGF ProbeThermoFisher Scientific4331182
TaqMan Gene Expression Assays Rn99999011_m1 IL6 ProbeThermoFisher Scientific4331182
TaqMan Fast Advanced Master MixThermoFisher Scientific4444557
Tissue-Tek Prisma H&E Stain Kit #1Sakura6190
Tissue-Tek Prisma Plus Automated Slide StainerSakura6171
TNBS (Picrylsulfonic acid solution)SIGMA-ALDRICH92822

参考文献

  1. Kappelman, M. D., et al. The prevalence and geographic distribution of Crohn's disease and ulcerative colitis in the United States. Clinical Gastroenterology and Hepatology. 5 (12), 1424-1429 (2007).
  2. Hwang, J. M., Varma, M. G. Surgery for inflammatory bowel disease. World Journal of Gastroenterology. 14 (17), 2678-2690 (2008).
  3. Latella, G., Rieder, F. Intestinal fibrosis: Ready to be reversed. Current Opinion in Gastroenterology. 33 (4), 239-245 (2017).
  4. Rieder, F., Fiocchi, C., Rogler, G. Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology. 152 (2), 340-350 (2017).
  5. Bettenworth, D., et al. Assessment of Crohn's disease-associated small bowel strictures and fibrosis on cross-sectional imaging: A systematic review. Gut. 68 (6), 1115-1126 (2019).
  6. Chen, W., Lu, C., Hirota, C., Iacucci, M., Ghosh, S., Gui, X. Smooth muscle hyperplasia/hypertrophy is the most prominent histological change in Crohn's fibrostenosing bowel strictures: A semiquantitative analysis by using a novel histological grading scheme. Journal of Crohn's and Colitis. 11 (1), 92-104 (2017).
  7. Olaison, G., Smedh, K., Sjödahl, R. Natural course of Crohn's disease after ileocolic resection: Endoscopically visualised ileal ulcers preceding symptoms. Gut. 33 (3), 331-335 (1992).
  8. Lin, Y. M., Li, F., Shi, X. Z. Mechanical stress is a pro-inflammatory stimulus in the gut: In vitro, in vivo and ex vivo evidence. PLoS One. 9, 106242 (2014).
  9. Gabella, G., Yamey, A. Synthesis of collagen by smooth muscle in the hyertrophic intestine. Experimental Physiology. 62 (3), 257-264 (1977).
  10. Katsanos, K. H., Tsianos, V. E., Maliouki, M., Adamidi, M., Vagias, I., Tsianos, E. V. Obstruction and pseudo-obstruction in inflammatory bowel disease. Annals of Gastroenterology. 23 (4), 243-256 (2010).
  11. Johnson, L. A., et al. Matrix stiffness corresponding to strictured bowel induces a fibrogenic response in human colonic fibroblasts. Inflammatory Bowel Disease. 19 (5), 891-903 (2013).
  12. Gayer, C. P., Basson, M. D. The effects of mechanical forces on intestinal physiology and pathology. Cell Signalling. 21 (8), 1237-1244 (2009).
  13. Cox, C. S., et al. Hypertonic saline modulation of intestinal tissue stress and fluid balance. Shock. 29 (5), 598-602 (2008).
  14. Shi, X. Z. Mechanical regulation of gene expression in gut smooth muscle cells. Frontiers in Physiology. 8, 1000 (2017).
  15. Shi, X. Z., Lin, Y. M., Powell, D. W., Sarna, S. K. Pathophysiology of motility dysfunction in bowel obstruction: Role of stretch-induced COX-2. American Journal of Physiology-Gastrointestinal and Liver. 300 (1), 99-108 (2011).
  16. Gutierrez, J. A., Perr, H. A. Mechanical stretch modulates TGF-beta1 and alpha1(I) collagen expression in fetal human intestinal smooth muscle cells. American Journal of Physiology. 277 (5), 1074-1080 (1999).
  17. Lipson, K. E., Wong, C., Teng, Y., Spong, S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 5, 24 (2012).
  18. Chaqour, B., Goppelt-Struebe, M. Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. The FEBS Journal. 273 (16), 3639-3649 (2006).
  19. Shi, X. Z., Winston, J. H., Sarna, S. K. Differential immune and genetic responses in rat models of Crohn's colitis and ulcerative colitis. American Journal of Physiology-Gastrointestinal and Liver. 300 (1), 41-51 (2011).
  20. Antoniou, E., et al. The TNBS-induced colitis animal model: An overview. Annals of Medicine and Surgery (London). 11, 9-15 (2016).
  21. Shi, X. Z., Sarna, S. K. Gene therapy of Cav1.2 channel with VIP and VIP receptor agonists and antagonists: A novel approach to designing promotility and antimotility agents. American Journal of Physiology-Gastrointestinal and Liver. 295 (1), 187-196 (2008).
  22. Lin, Y. M., Sarna, S. K., Shi, X. Z. Prophylactic and therapeutic benefits of COX-2 inhibitor on motility dysfunction in bowel obstruction: Roles of PGE2 and EP receptors. American Journal of Physiology-Gastrointestinal and Liver. 302 (2), 267-275 (2012).
  23. Morris, G. P., Beck, P. L., Herridge, M. S., Depew, W. T., Szewczuk, M. R., Wallace, J. L. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology. 96 (3), 795-803 (1989).
  24. Mudter, J., Neurath, M. F. Il-6 signaling in inflammatory bowel disease: Pathophysiological role and clinical relevance. Inflammatory Bowel Disease. 13 (8), 1016-1023 (2007).
  25. Geesala, R., Lin, Y. M., Zhang, K., Shi, X. Z. Targeting mechano-transcription process as therapeutic intervention in gastrointestinal disorders. Frontiers in Pharmacology. 12, 809350 (2021).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

181

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。