需要订阅 JoVE 才能查看此. 登录或开始免费试用。
集体信任博弈是一种基于计算机的多智能体信任博弈,基于HoneyComb范式,它使研究人员能够评估集体信任和相关结构的出现,例如公平,互惠或前瞻性信号。该游戏允许通过游戏中的移动行为详细观察群体过程。
从整体上理解群体信任的需求导致了衡量集体信任的新方法的激增。然而,现有的研究方法往往没有完全捕捉到这种结构的涌现品质。在本文中,提出了集体信任博弈(CTG),这是一种基于HoneyComb范式的基于计算机的多智能体信任博弈,使研究人员能够评估集体信任的出现。CTG建立在之前关于人际信任的研究基础上,并将广为人知的信任博弈改编为HoneyComb范式中的群体设置。参与者扮演投资者或受托人的角色;这两个角色都可以由团体扮演。最初,投资者和受托人被赋予一笔钱。然后,投资者需要决定他们想向受托人发送多少(如果有的话)捐赠基金。他们通过在显示可能的投资金额的运动场上来回移动来传达他们的倾向以及他们的最终决定。在他们的决策时间结束时,投资者同意的金额被乘以并发送给受托人。受托人必须传达他们希望将多少投资(如果有的话)返还给投资者。同样,他们通过在运动场上移动来做到这一点。这个过程重复多轮,以便集体信任可以通过反复的互动成为一种共享结构。通过这一程序,CTG提供了通过记录运动数据实时跟踪集体信任出现的机会。CTG可针对特定的研究问题进行高度定制,并且可以作为在线实验运行,使用少量低成本设备。本文表明,CTG将群体交互数据的丰富性与经济博弈的高内效度和时效性相结合。
集体信任博弈(CTG)提供了在线衡量一群人内部集体信任的机会。它将Berg,Dickhaut和McCabe1(BDM)的原始信任博弈推广到组级别,并且可以捕获和量化其新兴品质2,3,4的集体信任,以及公平,互惠或前向信号等相关概念。
以前的研究大多将信任概念化为一种纯粹的人际关系结构,例如,领导者和追随者之间的结构5,6,不包括更高层次的分析。特别是在组织环境中,这可能不足以从整体上理解信任,因此非常需要了解信任在集团层面建立(和减少)的过程。
最近,信任研究纳入了更多层次的思维。Fulmer和Gelfand7 回顾了许多关于信任的研究,并根据每项研究中调查的分析水平对它们进行了分类。三种不同的分析层次是人际关系(二元)、团体和组织。重要的是,Fulmer和Gelfand7 还区分了不同的指涉物。所指对象是信任所指向的实体。这意味着当"A信任B到X"时,A(经济游戏中的投资者)由级别(个人,团体,组织)表示,B(受托人)由所指对象(个人,团体,组织)表示。X 表示信任所引用的特定域。这意味着X可以是任何东西,例如一般积极的倾向,积极的支持,可靠性或金融交换,如经济游戏1。
在这里,集体信任是根据卢梭及其同事对人际信任的定义8定义的,类似于之前对集体信任9,10,11,12,13,14的研究;集体信任包括一个群体基于对另一个个人、团体或组织的意图或行为的积极期望而接受脆弱性的意图。集体信任是一群人之间共享的一种心理状态,是在这个群体之间的互动中形成的。因此,集体信任的关键方面是群体内部的共享。
这意味着对集体信任的研究需要超越单个过程的简单平均数,并将集体信任概念化为一种涌现现象2,3,4,因为群体科学的新发展表明,群体过程是流动的,动态的和涌现的2,15。我们将涌现定义为"较低层次的系统元素相互作用并通过这些动态创造在系统较高层次上表现的现象的过程"16(第335页)。建议这也适用于集体信任。
反映对群体过程的出现和动态的关注的研究应使用适当的方法17来捕捉这些品质。然而,目前集体信任衡量的状况似乎滞后。大多数研究对9,10,12,13,18组中每个人的数据采用了简单的平均技术。可以说,这种方法只有很少的预测有效性2,因为它忽略了群体不仅仅是个人的聚合,而是具有独特过程的更高层次的实体。一些研究试图解决这些缺点:亚当斯19的一项研究采用了潜在的变量方法,而Kim及其同事10使用小插图来估计集体信任。这些方法很有希望,因为它们承认集体信任是一种更高层次的结构。然而,正如Chetty及其同事20所指出的那样,基于调查的措施缺乏真实回答的激励,因此对信任的研究越来越多地采用行为或激励兼容的措施21,22。
许多研究解决了这个问题,这些研究采用了一种行为方法,即BDM1,由第23,24,25,26组演奏。在BDM中,双方作为投资者(A)或受托人(B)。在这个连续的经济博弈中,A和B都获得了初始捐赠(例如,10欧元)。然后,A需要决定他们想向B发送多少(如果有的话)捐赠基金(例如,5欧元)。然后,实验者将该金额增加三倍,然后 B 才能决定他们想要寄回给 A 的收到的钱(例如,15 欧元)中有多少(如果有的话)(例如,7.5 欧元)。A 寄给 B 的金额作为A 对 B 的信任程度,而 B 寄回的金额可用于衡量 B 的可信度或 A 和 B 二元组的公平程度。大量研究调查了二元信任博弈中的行为27.BDM既可以作为所谓的"一次性"游戏进行,其中参与者只与特定的人玩游戏一次,也可以重复进行,其中互惠28,29以及前向信号等方面可能发挥作用。
在许多将BDM应用于23,24,25,26组的研究中,投资者,受托人或两者兼而有之的角色都由群体扮演。然而,这些研究都没有记录群体过程。在研究设计中简单地用群体代替个体不符合Kolbe和Boos17或Kozlowski15为研究新兴现象而建立的标准。为了填补这一空白,开发了CTG。
开发CTG的目的是创建一种范式,将广泛使用的BDM1 与一种将集体信任捕获为在群体之间共享的基于行为的紧急结构的方法相结合。
CTG基于Boos及其同事30的HoneyComb范式,该范式也已发表在可视化实验杂志31 上,现已用于信任研究。正如Ritter及其同事32所描述的那样,HoneyComb范式是"一个基于计算机的多智能体虚拟游戏平台,旨在消除所有感官和沟通渠道,除了对参与者分配的化身运动在运动场上的感知"(第3页)。HoneyComb范式特别适用于研究群体过程,因为它允许研究人员使用时空数据记录真实群体成员的运动。可以说,除了群体相互作用分析17之外,HoneyComb是为数不多的允许研究人员详细跟踪群体过程的工具之一。与群体相互作用分析相比,蜂巢时空数据的定量分析耗时更低。此外,简化主义的环境和排除参与者之间除运动场上的运动之外的所有人际交流的可能性使研究人员能够限制混杂因素(例如,外表,声音,面部表情)并创建具有高内部有效性的实验。虽然在采用小组讨论设计的研究中很难确定群体过程的所有影响方面33,但对运动范式中群体互动的基本原则的关注使研究人员能够量化该实验中群体过程的各个方面。此外,以前的研究使用近似行为34 - 因此减少了自己和另一个人之间的空间 - 来调查信任35,36。
图1:CTG的示意图。 (A)一轮CTG的示意图。(B)在回合开始时首次放置头像。三位蓝色投资者站在初始字段"0"上。黄色受托人站在初始字段"0"上。(C)投资阶段的屏幕截图显示三个投资者(蓝色头像)在游戏场地的下半部分。一个(蓝色大头像)目前站在"12"上,两个投资者目前站在"24"上。两个头像有尾巴(用橙色箭头表示)。尾巴表示他们从哪个方向移动到当前领域(例如,一个投资者(蓝色大头像)刚刚从"0"移动到"12")。没有尾巴的头像已经在这个场地上站立了至少 4000 毫秒。 (D) 返回阶段的屏幕截图显示一个受托人(黄色头像)和游戏场地的上半部分。受托人目前站在"3/6"上,最近从"2/6"移到了那里,如尾部所示。下面的蓝色数字(36)表示投资者的投资。箭头指示的黄色数字是当前返回值 (54),如运动场中间所示。回报计算如下:(投资(36美分)x 3)x当前回报率(3/6)= 54美分。(E) 弹出窗口向参与者反馈他们在回合中赚取了多少,在受托人超时到期后显示 15 秒。 请点击此处查看此图的大图。
CTG的主要程序(图1A)紧密基于BDM1的程序,以使结果与以前使用这种经济游戏的研究相当。由于HoneyComb范式基于运动原理,参与者通过将他们的头像移动到表示一定数量的金钱或分数返回的小六边形场上来指示他们想要投资或回报的金额(图1C,D)。在每一轮融资之前,投资者和受托人都被赋予一定数量的资金(例如,72美分),投资者被放置在游戏场地的下半部分,受托人被放置在游戏场地的上半部分(图1B)。在默认设置中,允许投资者先移动,而受托人保持静止。投资者在运动场上移动,以表明他们想向受托人发送多少捐赠基金(如果有的话)(图1C)。通过在现场来回移动,参与者还可以与其他投资者传达他们想向受托人发送多少。根据配置,参与者需要在达到超时时通过汇聚在一个游戏场地上来就他们想要投资多少做出一致决定。需要一致的决定,以强制投资者需要相互交流,而不是简单地相互配合。如果投资者没有达成共同决定,将从他们的账户中扣除罚款(例如,24美分)。实施这一举措是为了确保投资者有很高的积极性达到共同的集体信任水平。一旦投资者的时间到了,投资的资金就会成倍增加并发送给受托人,然后允许受托人在投资者保持静止的情况下移动。受托人通过变动表明他们希望向投资者返还多少(图1D)。可用的返回选项在运动场上显示为分数,以保持受托人的认知负荷相对较低。受托人在分配的时间用完后所站立的运动场表明哪个部分(例如,4/6)返回给投资者。本轮以一个弹出窗口(图1E)结束,该弹出窗口汇总了每个参与者在该轮中赚取的金额以及他们的当前账户余额。
回合应重复多次。研究人员应该让参与者以相同的角色玩CTG至少10或15轮。这是必要的,因为集体信任是一种新兴结构,需要在群体内的反复互动中发展。同样,其他概念,如前瞻性信号(即在下一轮中以高投资回报受托人的高回报)只会在反复的互动中出现。然而,至关重要的是,参与者不知道要玩的确切回合数,因为已经表明,当参与者意识到他们正在玩最后一轮时,行为可能会发生巨大变化(即,经济游戏中更不公平的行为或偏转37,38)。
通过这种方式,CTG提供了有关多个层面集体信任出现的信息。首先,最后一轮中展示的集体信托水平应密切代表投资者对受托人持有的共同信任水平。其次,每轮投资的金额可以作为重复互动中集体信任形成的代表。第三,运动数据揭示了决定每轮投资多少资金的小组过程。
该项目的数据收集和数据分析已获得哥廷根大学乔治-埃利亚斯-穆勒心理研究所伦理委员会的批准(提案 289/2021);该协议遵循Georg-Elias-Müller-心理学研究所伦理委员会的人类研究指南。CTG 软件可从 OSF 项目 (DOI 10.17605/OSF.IO/U24PX) 下的链接:https://s.gwdg.de/w88YNL。
1. 准备技术设置
2. 参与者招募
3. 实验设置(每次实验前)
4. 实验程序
5. 完成实验
本文介绍了与CTG进行的一项试点研究的结果,该研究发现有16名参与者(5名男性,11名女性;年龄: M = 21, SD = 2.07)。根据Johanson和Brooks42的说法,这个样本量在试点实验中是足够的,特别是当与定性方法配对以达到实验期间参与者主观体验的高信息密度时。建议每当研究人员打算使CTG适应其特定的研究思路时,例如,通过定制每个组中的参与者人数,应在主要数据收...
CTG为研究人员提供了将经典BDM1应用于群体并深入观察群体内紧急过程的机会。虽然其他工作23,24,25,26已经尝试使BDM1适应小组设置,但在这些研究中访问小组过程的唯一方法是对视频录制的讨论进行费力的小组互动分析。由于这通常是一项繁琐且耗时的任务
作者没有什么可透露的。
这项研究没有得到任何外部资助。
Name | Company | Catalog Number | Comments |
Data Analysis Software and Packages | R | version 4.2.1 (2022-06-23 ucrt) | R Core Team R: A Language and Environment for Statistical Computing. at [https://www.R-project.org/]. R Foundation for Statistical Computing. Vienna, Austria. (2020). |
Data Analysis Software and Packages | R Studio | version 2022.2.3.492 "Prairie Trillium" | RStudio Team RStudio: Integrated Development Environment for R. at [http://www.rstudio.com/]. RStudio, PBC. Boston, MA. (2020). |
Data Analysis Software and Packages | ggplot2 | version 3.3.6 | Wickham, H. ggplot2: Elegant Graphics for Data Analysis. at [https://ggplot2.tidyverse.org]. Springer-Verlag New York. (2016). |
Data Analysis Software and Packages | cowplot | version 1.1.1 | Wilke, C.O. cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2.” at [https://CRAN.R-project.org/package=cowplot]. (2020). |
OnlineQuestionnaireTool | LimeSurvey | Community Edition Version 3.28.16+220621 | Any preferred online questionnaire tool can be used. LimeSurvey or SoSciSurvey are recommended. |
Notebooks or PCs | DELL | Latitude 7400 | Any laptop that is able to establish a stable Remote Desktop Connection can be used. |
Participant Management Software | ORSEE | version 3.1.0 | It is recommended to use ORSEE (Greiner, B. [2015]. Subject pool recruitment procedures: Organizing experiments with ORSEE. Journal of the Economic Science Association, 1, 114–125. https://doi.org/10.1007/s40881-015-0004-4), but other software options might be available. |
Program to Open RemoteDesktop Connection | Remote Desktop Connection (Program distributed with each Windows 10 installation.) | The following tools are recommended: RemoteDesktopConnection (for Windows), Remmina (for Linux), or Microsoft Remote Desktop (for Mac OS). | |
Server to run RemoteDesktop Environment | VMware vSphere environment based on vSphere ESXi | version 6.5 | Ideally provided by IT department of university/institution. |
VideoConference Platform | BigBlueButton | Version 2.3 | It is recommend to use a platform such as BigBlueButton or other free software that does not record participant data on an external server. The platform should provide the following functions: 1) possibility to restrict access to microphone and camera for participants, 2) hide participant names from other participants, 3) possibility to send private chat message to participants. |
Virtual Machine running Linux-Installation | Xubuntu | version 20.04 "Focal Fossa" | Other Linux-based systems will also be possible. |
请求许可使用此 JoVE 文章的文本或图形
请求许可探索更多文章
This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。