このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
集団信託ゲームは、HoneyCombパラダイムに基づくコンピューターベースのマルチエージェント信頼ゲームであり、研究者は集団信頼の出現と、公平性、互恵性、前方シグナリングなどの関連構造を評価できます。このゲームでは、ゲーム内の動きの動作を通じてグループプロセスを詳細に観察できます。
グループへの信頼を総合的に理解する必要性は、集団的信頼を測定するための新しいアプローチの急増につながりました。ただし、この構成は、利用可能な研究方法によって、その創発的な品質に完全に取り込まれていないことがよくあります。この論文では、研究者が集団的信頼の出現を評価することを可能にする、HoneyCombパラダイムに基づくコンピュータベースのマルチエージェント信頼ゲームである集団信託ゲーム(CTG)を紹介します。CTGは、対人信頼に関する以前の研究に基づいており、広く知られているトラストゲームをハニカムパラダイムのグループ設定に適応させます。参加者は、投資家または受託者のいずれかの役割を引き受けます。どちらの役割もグループで果たすことができます。当初、投資家と受託者は金額に恵まれています。次に、投資家は、もしあれば、受託者に送る寄付金の金額を決定する必要があります。彼らは、可能な投資額を表示するプレイフィールドを行ったり来たりすることで、傾向と最終決定を伝えます。決定時間の終わりに、投資家が合意した金額が乗算され、受託者に送られます。受託者は、もしあれば、その投資のどれだけを投資家に還元したいかを伝える必要があります。繰り返しますが、彼らはプレイフィールドを移動することによってそうします。この手順は複数回繰り返されるため、集合的な信頼は、繰り返しの相互作用を通じて共有構造として出現できます。この手順により、CTGは、移動データの記録を通じて、集団的信頼の出現をリアルタイムで追跡する機会を提供します。CTGは、特定の研究課題に合わせて高度にカスタマイズ可能であり、低コストの機器がほとんどないオンライン実験として実行できます。本稿では、CTGが集団相互作用データの豊富さと、経済ゲームの高い内部妥当性および時間効率を兼ね備えていることを示す。
集団的信頼ゲーム(CTG)は、人間のグループ内の集団的信頼をオンラインで測定する機会を提供します。Berg、Dickhaut、McCabe1(BDM)によるオリジナルのトラストゲームをグループレベルに一般化し、その創発的な資質2,3,4、および公平性、相互主義、前方シグナリングなどの関連概念における集団的信頼を捉えて定量化することができます。
以前の研究では、信頼を、たとえばリーダーとフォロワー5,6の間の対人関係構造として概念化しており、より高いレベルの分析は除外されています。特に組織のコンテキストでは、信頼を全体的に理解するにはこれだけでは不十分な場合があるため、グループレベルで信頼が構築(および減少)するプロセスを理解する必要があります。
最近、信頼調査には、よりマルチレベルの思考が組み込まれています。FulmerとGelfand7 は、信頼に関する多くの研究をレビューし、各研究で調査された分析のレベルに従ってそれらを分類しました。分析の3つの異なるレベルは、対人関係(ダイアディック)、グループ、および組織です。重要なことに、フルマーとゲルファンド7 はさらに異なる指示対象を区別します。指示対象は、信頼が向けられるエンティティです。これは、「AがBをXに信頼する」場合、A(経済ゲームの投資家)はレベル(個人、グループ、組織)で表され、B(受託者)は指示対象(個人、グループ、組織)で表されることを意味します。X は、信頼が参照する特定のドメインを表します。これは、Xが経済ゲーム1のように、一般的に前向きな傾向、積極的なサポート、信頼性、または金融交換など、何でもあり得ることを意味します。
ここでは、集団的信頼は、ルソーらの対人的信頼の定義8に基づいて定義されており、集団的信頼に関する先行研究9,10,11,12,13,14と同様である。集団的信頼は、別の個人、グループ、または組織の意図または行動に対する前向きな期待に基づいて脆弱性を受け入れるグループの意図で構成されます。集団的信頼は、人間のグループ間で共有され、このグループ間の相互作用で形成される心理状態です。したがって、集団的信頼の重要な側面は、グループ内の共有性です。
これは、集団科学の新しい発展が集団プロセスが流動的で動的で創発的であることを示しているように、集団的信頼に関する研究は、個々のプロセスの単純な平均を超えて、集団的信頼を創発現象として概念化する必要があることを意味します2,3,42,15。私たちは、創発を「下位レベルのシステム要素が相互作用し、それらのダイナミクスを通じてシステムのより高いレベルで現れる現象を生み出すプロセス」と定義しています16(p.335)。提案すると、これは集団的信頼にも当てはまるはずです。
グループプロセスの出現とダイナミクスに焦点を当てた研究は、これらの資質を捉えるために適切な方法論17を使用する必要があります。しかし、集団的信託測定の現状は遅れているように思われます。ほとんどの研究では、グループ9、10、12、13、18の各個人のデータに対して単純な平均化手法を採用しています。おそらく、このアプローチは、グループが単なる個人の集合体ではなく、独自のプロセスを持つ上位レベルのエンティティであることを無視しているため、予測妥当性2はほとんどありません。いくつかの研究はこれらの欠点に対処しようとしました:Adams19による研究は潜在変数アプローチを採用しましたが、Kimと同僚10は集団的信頼を推定するためにビネットを使用しました。これらのアプローチは、集団的信頼をより高いレベルの構造として認識するという点で有望です。しかし、Chettyら20が指摘しているように、調査ベースの測定には正直に答えるインセンティブがないため、信頼に関する研究では、行動的またはインセンティブ互換の指標がますます採用されています21,22。
この懸念は、行動方法、すなわちBDM1をグループ23、24、25、26によって再生するように適応させた多くの研究によって対処されています。BDMでは、2つの当事者が投資家(A)または受託者(B)のいずれかとして機能します。このシーケンシャルな経済ゲームでは、AとBの両方が最初の寄付金(たとえば、10ユーロ)を受け取ります。次に、Aは、もしあれば、Bに送金したい寄付金の金額を決定する必要があります(たとえば、5ユーロ)。次に、実験者はこの金額を3倍にしてから、Bが受け取ったお金(たとえば、15ユーロ)の金額(たとえば、7.5ユーロ)をAに返送するかを決定します。AがBに送る金額は、Bに対するAの信頼のレベルとして運用され、Bが送り返す金額は、Bの信頼性またはAとBのダイアドの公平性の程度を測定するために使用できます。多くの研究がダイアディックトラストゲーム27の行動を調査しました。BDMは、参加者が特定の人と一度だけゲームをプレイする、いわゆる「ワンショット」ゲームとして、または相互関係28,29や前方シグナリングなどの側面が役割を果たす可能性のある繰り返しラウンドの両方でプレイできます。
BDMをグループ23、24、25、26に適応させた多くの研究では、投資家、受託者、またはその両方の役割のいずれかがグループによって演じられていました。しかし、これらの研究はいずれも集団プロセスを記録していなかった。研究デザインで個人をグループに置き換えるだけでは、KolbeとBoos17またはKozlowski15が創発現象の調査のために設定した基準を満たしていません。このギャップを埋めるために、CTGが開発されました。
CTGの開発の目的は、広く使用されているBDM1 と、グループ間で共有される創発的な行動ベースの構造として集団的信頼を捉えるアプローチを組み合わせたパラダイムを作成することでした。
CTGは、BoosらによるHoneyCombパラダイム30に基づいており、Journal of Visualized Experiment31にも掲載されており、現在は信頼研究での使用に適合しています。Ritterら32が説明したように、HoneyCombパラダイムは「プレイフィールドでの参加者が割り当てたアバターの動きの知覚を除くすべての感覚およびコミュニケーションチャネルを排除するように設計されたマルチエージェントコンピューターベースの仮想ゲームプラットフォーム」(p.3)。HoneyCombパラダイムは、研究者が時空間データを使用して実際のグループのメンバーの動きを記録できるため、研究グループのプロセスに特に適しています。グループ相互作用分析17の次に、HoneyCombは、研究者がグループプロセスを非常に詳細に追跡できる数少ないツールの1つであると主張することができます。グループ相互作用分析とは対照的に、HoneyCombの時空間データの定量分析は時間集約的ではありません。さらに、還元主義的な環境と、遊び場での動きを除いて、参加者間のすべての対人コミュニケーションを排除する可能性により、研究者は交絡因子(例えば、身体的外観、声、表情)を制限し、高い内部妥当性を持つ実験を作成することができます。グループディスカッションデザインを採用した研究では、グループプロセスの影響力のある側面をすべて特定することは困難ですが33、運動パラダイムにおけるグループ相互作用の基本原則に焦点を当てることで、研究者はこの実験でグループプロセスのすべての側面を定量化できます。さらに、以前の研究では、プロキシミック行動34を使用して、自分と別の個人との間のスペースを減らし、信頼を調査しました35,36。
図1:CTGの概略図。 (A)1回のCTGラウンドの概略手順。(B)ラウンド開始時のアバターの初期配置。3人の青い投資家は最初のフィールド「0」に立っています。黄色のトラスティは、最初のフィールド「0」に立っています。(C)プレイフィールドの下半分に3人の投資家(青いアバター)を示す投資フェーズ中のスクリーンショット。1人(大きな青いアバター)は現在「12」に立っており、2人の投資家は現在「24」に立っています。2つのアバターには尾があります(オレンジ色の矢印で示されています)。尾は、現在のフィールドに移動した方向を示しています(たとえば、1人の投資家(大きな青いアバター)が「0」から「12」に移動したばかりです)。尻尾のないアバターは、このフィールドに少なくとも4000ミリ秒立っています。 (D)1人のトラスティ(黄色のアバター)とプレイフィールドの上半分を示すリターンフェーズ中のスクリーンショット。受託者は現在「3/6」に立っており、尾で示されているように最近「2/6」からそこに移動しました。下の青い数字(36)は、投資家による投資を示しています。矢印で示されている黄色の数字は、プレイフィールドの中央に示されている現在のリターン(54)です。リターンは次のように計算されます:(投資(36セント)x 3)x現在のリターンの割合(3/6)= 54セント。(E) ラウンド中に獲得した金額を参加者にフィードバックするポップアップウィンドウで、受託者のタイムアウト後15秒間表示されます。 この図の拡大版を表示するには、ここをクリックしてください。
CTGの主な手順(図1A)は、この経済ゲームを使用した以前の研究に匹敵する結果を得るために、BDM1の手順に密接に基づいています。HoneyCombパラダイムは移動の原則に基づいているため、参加者は、特定の金額または端数を返すことを示す小さな六角形のフィールドにアバターを移動することにより、投資または返品する金額を示します(図1C、D)。各ラウンドの前に、投資家と受託者の両方に一定の金額(たとえば、72セント)が与えられ、投資家はプレイフィールドの下半分に配置され、受託者はプレイフィールドの上半分に配置されます(図1B)。デフォルト設定では、受託者は静止したまま、投資家は最初に移動することができます。投資家はプレイフィールドを横切って移動し、受託者に送金したい寄付がある場合はそれを示します(図1C)。参加者は、フィールドを行ったり来たりすることで、他の投資家に受託者に送金したい金額を伝えることもできます。構成に応じて、参加者は、タイムアウトに達したときに1つのプレイフィールドに収束することにより、投資する金額について全会一致で決定する必要があります。投資家が単に互いに一緒に遊ぶのではなく、互いに相互作用する必要があることを強制するために、全会一致の決定が必要でした。投資家が共同決定に達しない場合、ペナルティ(24セントなど)が口座から差し引かれます。これは、投資家が集団的信頼の共有レベルに到達するために高い意欲を持つことを保証するために実施されました。投資家の時間が経過すると、投資されたお金は乗算され、受託者に送られ、受託者は投資家が静止している間に移動が許可されます。受託者は、投資家にどれだけ還元したいかを移動を通じて示します(図1D)。利用可能なリターンオプションは、受託者の認知的負荷を比較的低く抑えるために、プレイフィールドに分数として表示されます。割り当てられた時間がなくなった後に受託者が立つプレイフィールドは、どの割合(たとえば、4/6)が投資家に返還されるかを示します。ラウンドは、各参加者について、そのラウンド中に獲得した金額と現在の口座残高を要約したポップアップ(図1E)で終了します。
ラウンドは複数回繰り返す必要があります。研究者は、参加者に同じ役割で少なくとも10ラウンドまたは15ラウンドCTGをプレイさせる必要があります。集団的信頼は創発的な構造であり、グループ内で繰り返される相互作用の間に発展する必要があるため、これは必要です。同様に、フォワードシグナリング(つまり、次のラウンドで高額の投資を行う受託者から高いリターンを往復させる)などの他の概念は、繰り返される相互作用でのみ現れます。ただし、参加者が最終ラウンドをプレイしていることに気づくと行動が大幅に変化する可能性があることが示されているため、参加者はプレイするラウンドの正確な数を認識していないことが重要です(つまり、経済ゲームでのより不公平な行動や偏向37,38)。
このようにして、CTGは、複数のレベルでの集団的信頼の出現に関する情報を提供します。第一に、最終ラウンドで示された集団的信頼のレベルは、投資家が受託者に対して保持する共有の信頼レベルを厳密に表している必要があります。第二に、各ラウンドに投資された金額は、繰り返される相互作用に対する集団的信頼の出現の代理として役立つ可能性があります。第三に、移動データは、各ラウンドにどれだけのお金が投資されるかを決定するグループプロセスに光を当てます。
このプロジェクトでのデータ収集とデータ分析は、ゲッティンゲン大学のゲオルクエリアスミュラー心理学研究所の倫理委員会によって承認されています(提案289/2021)。プロトコルは、ゲオルク・エリアス・ミュラー心理学研究所の倫理委員会の人間研究に関するガイドラインに従います。CTGソフトウェアはOSFプロジェクト(DOI 10.17605/OSF.IO / U24PX)リンクの下:https://s.gwdg.de/w88YNL。
1.技術的なセットアップを準備します
2. 参加者募集
3. 実験セットアップ(各実験セッション前)
4. 実験手順
5. 実験の終了
この論文は、16人の参加者(男性5人、女性11人;年齢: M = 21、 SD = 2.07)。JohansonとBrooks42によると、このサンプルサイズは、特に実験中の参加者の主観的経験について高い情報密度に到達するための定性的アプローチと組み合わせると、パイロット実験では十分です。研究者がCTGを特定の研究アイデアに適応させる場合は常に、たとえば、各グループ内の参加者数を?...
CTGは、研究者に古典的なBDM1をグループに適応させ、グループ内の創発的なプロセスを詳細に観察する機会を提供します。他の研究23,24,25,26はすでにBDM1をグループ設定に適応させようと試みているが、これらの研究でグループプロセスにアクセスする唯一の方法...
著者は開示するものは何もありません。
この研究は外部資金を受けていませんでした。
Name | Company | Catalog Number | Comments |
Data Analysis Software and Packages | R | version 4.2.1 (2022-06-23 ucrt) | R Core Team R: A Language and Environment for Statistical Computing. at [https://www.R-project.org/]. R Foundation for Statistical Computing. Vienna, Austria. (2020). |
Data Analysis Software and Packages | R Studio | version 2022.2.3.492 "Prairie Trillium" | RStudio Team RStudio: Integrated Development Environment for R. at [http://www.rstudio.com/]. RStudio, PBC. Boston, MA. (2020). |
Data Analysis Software and Packages | ggplot2 | version 3.3.6 | Wickham, H. ggplot2: Elegant Graphics for Data Analysis. at [https://ggplot2.tidyverse.org]. Springer-Verlag New York. (2016). |
Data Analysis Software and Packages | cowplot | version 1.1.1 | Wilke, C.O. cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2.” at [https://CRAN.R-project.org/package=cowplot]. (2020). |
OnlineQuestionnaireTool | LimeSurvey | Community Edition Version 3.28.16+220621 | Any preferred online questionnaire tool can be used. LimeSurvey or SoSciSurvey are recommended. |
Notebooks or PCs | DELL | Latitude 7400 | Any laptop that is able to establish a stable Remote Desktop Connection can be used. |
Participant Management Software | ORSEE | version 3.1.0 | It is recommended to use ORSEE (Greiner, B. [2015]. Subject pool recruitment procedures: Organizing experiments with ORSEE. Journal of the Economic Science Association, 1, 114–125. https://doi.org/10.1007/s40881-015-0004-4), but other software options might be available. |
Program to Open RemoteDesktop Connection | Remote Desktop Connection (Program distributed with each Windows 10 installation.) | The following tools are recommended: RemoteDesktopConnection (for Windows), Remmina (for Linux), or Microsoft Remote Desktop (for Mac OS). | |
Server to run RemoteDesktop Environment | VMware vSphere environment based on vSphere ESXi | version 6.5 | Ideally provided by IT department of university/institution. |
VideoConference Platform | BigBlueButton | Version 2.3 | It is recommend to use a platform such as BigBlueButton or other free software that does not record participant data on an external server. The platform should provide the following functions: 1) possibility to restrict access to microphone and camera for participants, 2) hide participant names from other participants, 3) possibility to send private chat message to participants. |
Virtual Machine running Linux-Installation | Xubuntu | version 20.04 "Focal Fossa" | Other Linux-based systems will also be possible. |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved