JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

该协议描述了一种逐步建立感染金黄色葡萄球菌的离绵羊受伤皮肤模型的方法。与传统微生物学技术相比,这种高通量模型更好地模拟体内感染,并为研究人员提供了一个生理相关的平台来测试新兴抗菌剂的功效。

摘要

抗菌药物的开发是一个昂贵的过程,成功率越来越低,这使得对抗菌发现研究的进一步投资变得不那么有吸引力。如果在先导物优化阶段可以实施快速失败和廉价失败的方法,那么抗菌药物的发现和随后的商业化可以变得更加有利可图,研究人员可以更好地控制药物设计和配方。本文介绍了一种感染金黄色葡萄球菌的离绵羊损伤皮肤模型的建立,该模型简单、经济高效、通量高且可重复。模型中的细菌生理学模拟了感染期间细菌增殖取决于病原体破坏组织的能力。伤口感染的建立通过与接种物相比活细菌计数的增加来验证。该模型可用作在先导物优化阶段测试新兴抗菌剂功效的平台。可以说,该模型的可用性将为开发抗菌剂的研究人员提供快速失败和失败便宜的模型,这将有助于提高后续动物试验的成功率。该模型还将促进减少和改进动物用于研究,并最终能够更快,更具成本效益地将用于皮肤和软组织感染的新型抗菌剂转化为临床。

引言

皮肤感染是一个重要的全球性问题,给世界各地的医疗保健提供者带来了巨大的经济成本。病原体对多重耐药性和生物膜形成的发展在伤口不愈合的流行中起着关键作用1234因此,皮肤和软组织感染是延长住院和随后再次入院的更常见原因之一5。伤口愈合的延迟对患者和医疗保健提供者来说都是代价高昂的,据估计,美国每年约有 650 万患者受到影响。在英国,皮肤感染和相关并发症每年导致约75,000人死亡246

金黄色葡萄球菌(S. aureus) 是一种强大的伤口病原体,经常从患者伤口中分离出来27。多重耐药性的出现率在2000年代急剧增加。在此期间,大约 60% 的急性细菌性皮肤和皮肤结构感染对耐甲氧西林 金黄色葡萄球菌1 呈培养阳性。在过去20年中, 葡萄球菌和其他病原体中耐多药菌株的数量不断增加,这表明迫切需要快速开发具有克服耐药性的新作用模式的抗生素。

然而,自 2000 年代初以来,抗生素发现计划一直以较长的开发时间和低成功率为主,只有 17% 的新型抗生素进入美国临床试验获得市场批准8.这表明新兴抗生素的 体外 检测结果与其临床结果之间存在差异。可以争辩说,这种差异主要是由于 体内 感染期间细菌生理学的差异以及在 体外 临床前阶段测试抗生素功效时常规微生物学方法的差异。因此,需要更能代表感染期间细菌生理学的新型实验室方法,以提高抗生素发现计划的成功率。

目前研究皮肤感染的方法包括活体动物(例如小鼠)、离体皮肤模型(例如猪)和3D组织工程皮肤模型(例如人类)的研究9,10,1112对活体动物的研究受到严格监管,通量相对较低。在动物模型中,伤害和感染会给动物带来巨大的痛苦,并引起伦理问题。人体皮肤模型,离体或组织工程,需要伦理批准,遵守当地和全球立法(人体组织法,赫尔辛基宣言),并且难以获得组织,有些要求需要数年才能满足1314。这两种模型类型都是劳动密集型的,需要大量的专业知识才能确保实验成功。目前一些离皮肤感染模型需要预先接种的椎间盘和伤口床添加剂才能使感染;尽管这些模型非常有用,但在感染过程中存在局限性,因为添加剂限制了伤口床作为营养来源的利用10151617本研究中描述的模型不对伤口床使用添加剂,这确保了感染的病理学和活细胞计数是直接利用伤口床作为唯一营养来源的结果。

鉴于对新实验室方法的需求,已经开发出一种用于评估新兴抗生素疗效的新型高通量离 羊皮肤感染模型。皮肤感染研究面临许多挑战 - 高成本,伦理问题和无法显示全貌的模型2021 体模型和3D外植体模型可以更好地可视化疾病过程以及更具临床相关性的模型对治疗的影响。这里描述了一种新的绵羊皮肤模型的建立,该模型简单,可重复,临床相关且具有高通量。选择绵羊皮肤是因为绵羊是通常用于模拟 体内感染反应的大型哺乳动物之一。此外,它们很容易从屠宰场获得,确保为研究提供稳定的皮肤供应,并且它们的尸体不会被烫伤,确保良好的组织质量。这项研究使用 金黄色葡萄球菌 作为典型病原体;但是,该模型适用于其他微生物。

研究方案

来自R.B Elliott和Son屠宰场的羔羊头被用作该项目的皮肤样本来源。所有的羔羊都被宰杀作为食物食用。这些没有丢弃头部,而是被重新用于研究。不需要道德批准,因为组织来自屠宰场丢弃的废物。

1. 灭菌

  1. 在收集头部之前对镊子进行消毒,方法是取干净的镊子并在200°C的烤箱中进行干热灭菌1小时。使用前将所有玻璃器皿在121°C高压灭菌15分钟。
  2. 在微生物学2级机柜内执行所有描述的工作。按照制造商的说明准备所有试剂。

2. 样品采集

  1. 在屠宰场,斯瓦勒代尔羔羊被电击或俘虏螺栓手枪击杀并放血。屠宰后不超过4小时收集羊头。

3. 头部的准备

  1. 将大约 100 mL 的 200 ppm 二氧化氯溶液倒入样品区域,对羊肉的前额部分进行消毒。使用电动剪剃除头部的前额部分,并用 200 mL 的 200 ppm 二氧化氯溶液清洗该区域。
  2. 用乙醇和蓝卷擦拭该区域,并用脱毛膏覆盖样品区域35分钟。使用刮刀工具轻轻刮掉脱毛膏并评估样品区域。如果留下大量毛发,请重复脱毛过程。
  3. 再使用200mL二氧化氯溶液冲洗该区域,然后用乙醇冲洗并用蓝卷擦拭。
  4. 使用无菌的8毫米活检打孔器,从制备的区域切出8毫米的皮肤样本。使用无菌镊子和 15 刀片手术刀取出样品,确保去除所有皮肤脂肪。
  5. 将样品放入装有无菌磷酸盐缓冲盐水(PBS)的无菌0.5L罐中,然后用50mL的200ppm二氧化氯溶液将其转移到无菌的50mL管中,倒置两次,并灭菌30分钟。
  6. 从二氧化氯溶液中取出样品,并通过将它们放入装有 40 mL 无菌 PBS 的 50 mL 管中来洗涤它们。洗涤后,将每个单独的皮肤样品放入24孔板的单独孔中。
  7. 加入 350 μL 预热培养基,同时将样品保持在气液界面。培养基的组成如下:MK培养基(含有汉克斯盐、L-谷氨酸和1.75 mg/mL碳酸氢钠的培养基199)和Ham's F12,比例为1:1,添加FBS(10% v/v)、EGF(10 ng/mL)、胰岛素(5μg/mL)、青霉素-链霉素(100 U/mL)和两性霉素B(2.5μg/mL)。
  8. 用透气板密封密封24孔板,并在37°C下在加湿的5%CO2 组织培养箱中孵育长达24小时。

4. 皮肤样品的维护

  1. 孵育后,取出培养基并在 500 μL 无菌 PBS 中冲洗样品。向每个样品中加入无抗生素培养基,并在37°C下在加湿的5%CO2 组织培养箱中孵育24小时以除去样品中的残留抗生素。
  2. 如果在24小时后在无抗生素培养基中出现浑浊或真菌感染,则丢弃样品。

5. 接种物的制备

  1. 准备一个 50 mL 的管子和 10 mL 无菌胰蛋白酶大豆肉汤。取新鲜的 金黄色葡萄球菌 琼脂平板,用拭子将几个菌落转移到肉汤中。在37°C以150rpm孵育18小时。
  2. 以4,000× g 离心3分钟。除去上清液并将细胞沉淀重悬于10mL无菌PBS中。重复两次以确保充分洗涤细胞。
  3. 在无菌PBS中将接种物调节至0.6 OD600 。通过进行手动活板计数来确认接种量。

6.皮肤样本感染

  1. 用 400 μL 预热的无抗生素培养基制备新鲜的 24 孔板,并使用无菌镊子加入 24 孔插入物。
  2. 从皮肤样品中取出培养基,用 500 μL 无菌 PBS 洗涤,然后取出洗涤液。使用无菌镊子将样品轻轻地固定在孔底部。
  3. 使用 4 mm 穿刺活检制作中央伤口瓣,刺穿至 1-2 mm 的粗糙深度。然后,使用 15 刀片手术刀和无菌齿状茴苣组织钳去除伤口皮瓣的顶层。伤口尺寸的变化可能会影响感染的结果和终点集落形成单位(CFU)。
  4. 一旦所有样品都被伤住,使用无菌镊子将它们转移到24孔插入物中。将15μL细菌接种物移液到伤口床中。然后,在加湿的5%CO2 组织培养箱中于37°C孵育24小时。
  5. 如果需要更长的孵育期,请每24小时取出培养基并用新鲜培养基替换,并在相同条件下孵育。

7. 细菌负荷量的测定

  1. 从孔底部取出培养基。使用无菌镊子将每个样品转移到装有 1 mL 无菌 PBS 的单独 50 mL 管中。
  2. 使用细尖均质器使样品表面均质化。注意确保伤口床与均质机的尖端直接接触。
  3. 在中/高下均质每个样品35秒。均质机将细菌从伤口床表面分离,以允许计数细菌负荷。
  4. 处理完所有样品后,在移液前依次涡旋每个样品。这是为了确保细菌匀浆混合。
  5. 将 20 μL 涡旋匀浆移液到含有 180 μL 无菌 PBS 的 96 孔板的相应孔中。
  6. 将每个样品匀浆连续稀释至 1 x 10−7 ,并将 10 μL 稀释的匀浆移液到胰蛋白酶大豆琼脂平板上一式三份。
  7. 将琼脂平板在37°C孵育18小时。 然后,计算菌落数以确定每个样品的CFU。

结果

在建立伤口感染模型之前确定对皮肤进行消毒的途径具有挑战性。挑战在于在不损害不同皮肤层的情况下对皮肤进行消毒,这可能会继续对感染结果产生意想不到的后果。为了确定适当的灭菌方案,如 表1所示,在不同的时间内尝试了不同的处理方法。污染记录为用于维持皮肤样品的MK培养基中48小时后浑浊的发展。通过组织学监测组织完整性,然后在处理后立即用苏木精和伊红(H&E?...

讨论

抗菌剂的开发是一项重要但昂贵的冒险,估计耗资约10亿美元,大约需要15年才能完成。超过90%的抗菌药物发现和抗菌药物疗效的临床前研究是由学术研究人员和通常少于50名员工的中小型公司进行的22。这些团队在财务上非常拮据,这使得铅分子在转化研究后期阶段的失败是灾难性的。抗微生物药物耐药性的上升速度超过了新型抗菌药物的发展速度,这进一步加剧了负责任地管?...

披露声明

作者没有什么可透露的

致谢

作者要感谢EPSRC(EP/R513313/1)的资助。作者还要感谢切斯特菲尔德卡洛的R.B Elliot和Son屠宰场提供羊头并在项目的早期阶段如此包容,感谢Kasia Emery在整个协议开发过程中的支持,以及谢菲尔德大学感染,免疫和心血管疾病系的Fiona Wright处理组织学样本,并在整个项目中提供了令人难以置信的帮助。

材料

NameCompanyCatalog NumberComments
24 Well Companion PlateSLS 353504
4 mm Biopsy PunchWilliams MedicalD7484
50 ml centrifuge tubesFisher Scientific 10788561
8 mm Biopsy PunchWilliams MedicalD7488
Amphotericin B solution, sterileSigma A2942
Colour Pro Style Cordless Hair ClipperWahl9639-2117XHair Clippers
Dual Oven IncubatorSLSOVe1020Sterilising oven
Epidermal growth factor SLSE5036-200UG
EthanolHoneywell458600-2.5L
F12 HAMSigmaN4888
Foetal bovine serum Labtech InternationalCA-115/500
ForcepsFisher Scientific15307805
Hair Removal CreamVeetNot applicable
Heracell VIOS 160iThermo Scientific15373212 Tissue culture incubator
Heraeus Megafuge 16RVWR521-2242Centrifuge
Homogenizer 220, HandheldFisher Scientific15575809
Homogenizer 220, plastic blending conesFisher Scientific 15585819
Insert Individual 24 well 0.4um membraneVWR International353095
Insulin, recombinant HumanSLS91077C-1G
Medium 199 (MK media)SigmaM0393
Microplate, cell culture Costar 96 wellFisher Scientific10687551
MultitronInforsNot applicableBacterial incubator
PBS tabletsSigma P4417-100TAB
Penicillin-StreptomycinSLS P0781
Plate sealsFisher ScientificESI-B-100
Safe 2020Fisher Scientific1284804Class II microbiology safety cabinet
Scalpel blade number 15Fisher ScientificO305
Scalpel Swann MortonFisher Scientific11849002
Sodium bicarbonateSigmaS5761-1KG
Toothed Allis Tissue ForcepsRocialleRSPU500-322
Tryptic Soy AgarMerck Life Science UK Limited14432-500G-F
Tryptic Soy BrothMerck Life Science UK Limited41298-500G-F
Vimoba TabletsQuip LabsVMTAB75BX

参考文献

  1. Claeys, K. C., et al. Novel application of published risk factors for methicillin-resistant S. aureus in acute bacterial skin and skin structure infections. International Journal of Antimicrobial Agents. 51 (1), 43-46 (2018).
  2. Rahim, K., et al. Bacterial contribution in chronicity of wounds. Microbial Ecology. 73 (3), 710-721 (2017).
  3. Guest, J. F., Fuller, G. W., Vowden, P. Costs and outcomes in evaluating management of unhealed surgical wounds in the community in clinical practice in the UK: A cohort study. BMJ Open. 8 (12), 022591 (2018).
  4. Sen, C. K., et al. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair and Regeneration. 17 (6), 763-771 (2009).
  5. Wilcox, M. H., Dryden, M. Update on the epidemiology of healthcare-acquired bacterial infections: Focus on complicated skin and skin structure infections. Journal of Antimicrobial Chemotherapy. 76, (2021).
  6. Han, G., Ceilley, R. Chronic wound healing: A review of current management and treatments. Advances in Therapy. 34 (3), 599-610 (2017).
  7. Percival, S. L., Hill, K. E., Malic, S., Thomas, D. W., Williams, D. W. Antimicrobial tolerance and the significance of persister cells in recalcitrant chronic wound biofilms. Wound Repair and Regeneration. 19 (1), 1-9 (2011).
  8. Dheman, N., et al. An analysis of antibacterial drug development trends in the United States, 1980-2019. Clinical Infectious Diseases. 73 (11), 4444-4450 (2021).
  9. MacNeil, S., Shepherd, J., Smith, L. Production of tissue-engineered skin and oral mucosa for clinical and experimental use. Methods in Molecular Biology. 695, 129-153 (2011).
  10. Yang, Q., et al. Development of a novel ex vivo porcine skin explant model for the assessment of mature bacterial biofilms. Wound Repair and Regeneration. 21 (5), 704-714 (2013).
  11. Malachowa, N., Kobayashi, S. D., Lovaglio, J., Deleo, F. R. Mouse model of Staphylococcus aureus skin infection. Methods in Molecular Biology. 1031, 109-116 (2013).
  12. Brandenburg, K. S., Calderon, D. F., Kierski, P. R., Czuprynski, C. J., Mcanulty, J. F. Novel murine model for delayed wound healing using a biological wound dressing with Pseudomonas aeruginosa biofilms. Microbial Pathogenesis. 122, 30-38 (2018).
  13. Bledsoe, M. J., Grizzle, W. E. The use of human tissues for research: What investigators need to know. Alternatives to Laboratory Animals. , (2022).
  14. Danso, M. O., Berkers, T., Mieremet, A., Hausil, F., Bouwstra, J. A. An ex vivo human skin model for studying skin barrier repair. Experimental Dermatology. 24 (1), 48-54 (2015).
  15. Torres, J. P., et al. Ex vivo murine skin model for B. burgdorferi biofilm. Antibiotics. 9 (9), 1-18 (2020).
  16. Zhao, G., et al. Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: A model for the study of chronic wounds. Wound Repair and Regeneration. 18 (5), 467-477 (2010).
  17. Schierle, C. F., Dela Garza, M., Mustoe, T. A., Galiano, R. D. Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair and Regeneration. 17 (3), 354-359 (2009).
  18. Trøstrup, H., et al. Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model. Wound Repair and Regeneration. 21 (2), 292-299 (2013).
  19. Thompson, M. G., et al. Evaluation of gallium citrate formulations against a multidrug-resistant strain of Klebsiella pneumoniae in a murine wound model of infection. Antimicrobial Agents and Chemotherapy. 59 (10), 6484-6493 (2015).
  20. Maboni, G., et al. A novel 3D skin explant model to study anaerobic bacterial infection. Frontiers in Cellular and Infection Microbiology. 7, 404 (2017).
  21. Macneil, S. Progress and opportunities for tissue-engineered skin. Nature. 445 (7130), 874-880 (2007).
  22. Theuretzbacher, U., Outterson, K., Engel, A., Karlén, A. The global preclinical antibacterial pipeline. Nature Reviews Microbiology. 18 (5), 275-285 (2019).
  23. Miethke, M., et al. Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry. 5 (10), 726-749 (2021).
  24. Guedes, G. M. M., et al. Ex situ model of biofilm-associated wounds: Providing a host-like environment for the study of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Journal of Applied Microbiology. 131 (3), 1487-1497 (2021).
  25. Johnson, C. J., et al. Augmenting the activity of chlorhexidine for decolonization of Candida auris from porcine skin. Journal of Fungi. 7 (10), 804 (2021).
  26. Horton, M. V., et al. Candida auris Forms High-Burden Biofilms in Skin Niche Conditions and on Porcine Skin. mSphere. 5 (1), 00910-00919 (2020).
  27. Ashrafi, M., et al. Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures. Scientific Reports. 8, 1-16 (2018).
  28. Brackman, G., Coenye, T. In vitro and in vivo biofilm wound models and their application. Advances in Experimental Medicine and Biology. 897, 15-32 (2016).
  29. Rumbaugh, K. P., Carty, N. L. In Vivo Models of Biofilm Infection. Biofilm Infections. , 267-290 (2011).
  30. Boase, S., Valentine, R., Singhal, D., Tan, L. W., Wormald, P. J. A sheep model to investigate the role of fungal biofilms in sinusitis: Fungal and bacterial synergy. International Forum of Allergy & Rhinology. 1 (5), 340-347 (2011).
  31. Williams, D. L., et al. Experimental model of biofilm implant-related osteomyelitis to test combination biomaterials using biofilms as initial inocula. Journal of Biomedical Materials Research. Part A. 100 (7), 1888-1900 (2012).
  32. Scheerlinck, J. P. Y., Snibson, K. J., Bowles, V. M., Sutton, P. Biomedical applications of sheep models: From asthma to vaccines. Trends in Biotechnology. 26 (5), 259-266 (2008).
  33. Metcalfe, A. D., Ferguson, M. W. J. Tissue engineering of replacement skin: The crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. Journal of the Royal Society Interface. 4 (14), 413-417 (2007).
  34. Kazemi-Darabadi, S., Sarrafzadeh-Rezaei, F., Farshid, A. A., Dalir-Naghadeh, B. Allogenous skin fibroblast transplantation enhances excisional wound healing following alloxan diabetes in sheep, a randomized controlled trial. International Journal of Surgery. 12 (8), 751-756 (2014).
  35. Martinello, T., et al. Allogeneic mesenchymal stem cells improve the wound healing process of sheep skin. BMC Veterinary Research. 14 (1), 1-9 (2018).
  36. Roberts, C. D., Windsor, P. A. Innovative pain management solutions in animals may provide improved wound pain reduction during debridement in humans: An opinion informed by veterinary literature. International Wound Journal. 16 (4), 968 (2019).
  37. Mazzone, L., et al. Bioengineering and in utero transplantation of fetal skin in the sheep model: A crucial step towards clinical application in human fetal spina bifida repair. Journal of Tissue Engineering and Regenerative Medicine. 14 (1), 58-65 (2020).
  38. Olkowska, E., Gržinić, G. Skin models for dermal exposure assessment of phthalates. Chemosphere. 295, 133909 (2022).
  39. Couto, N., et al. Label-free quantitative proteomics and substrate-based mass spectrometry imaging of xenobiotic metabolizing enzymes in ex vivo human skin and a human living skin equivalent model. Drug Metabolism and Disposition. 49 (1), 39-52 (2021).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

187

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。