Method Article
土壤含水量的测定是许多州和联邦机构的关键任务要求。该协议综合了多机构的努力,使用埋地 传感器 测量土壤含水量。
土壤湿度直接影响业务水文、粮食安全、生态系统服务和气候系统。然而,由于数据收集不一致、标准化程度差以及记录持续时间通常较短,土壤湿度数据的采用速度很慢。土壤湿度或定量体积土壤含水量(SWC)是使用埋藏的 原位 传感器测量的,该传感器从电磁响应推断SWC。该信号可能随当地场地条件(例如粘土含量和矿物学、土壤盐度或体积电导率以及土壤温度)而有很大差异;根据传感器技术的不同,这些中的每一个都会产生不同的影响。
此外,随着时间的推移,土壤接触不良和传感器退化会影响这些读数的质量。与更传统的环境传感器不同,SWC数据没有公认的标准、维护实践或质量控制。因此,对于许多环境监测网络来说,SWC是一项具有挑战性的衡量标准。在这里,我们试图为原 位 SWC传感器建立一个基于社区的实践标准,以便未来的研究和应用在现场选择,传感器安装,数据解释和监测站的长期维护方面具有一致的指导。
该录像侧重于多机构就 安装原位 SWC传感器的最佳实践和建议达成共识。本文概述了该协议以及高质量和长期SWC数据收集所必需的各种步骤。该协议将对希望部署单个站点或整个网络的科学家和工程师有用。
土壤湿度最近被认为是全球观测气候系统中的基本气候变量1。土壤湿度或定量体积土壤含水量(SWC)在将入射辐射通量划分为地球表面和大气之间的潜热和显热以及将降水划分为径流和渗透方面起着重要作用2。然而,土壤湿度在点、田间和流域尺度上的时空变化使我们在满足研究或管理目标所需的适当尺度上测量SWC的能力变得复杂3。量化SWC的新方法,包括 原位 传感器、近端探测器和遥感的地面网络,为以前所未有的分辨率绘制SWC变化提供了独特的机会4。 原位 SWC传感器提供时间上最连续和深度特定的数据记录,但也受到小传感量和土壤特性、地形和植被覆盖固有的局部尺度变化的影响5。
此外,在 原位 SWC传感器的安装、校准、验证、维护和质量控制方面,缺乏标准或广泛接受的方法。土壤湿度本质上是一个具有挑战性的测量参数,可能是最难保证质量的变量6.虽然SWC数据收集的一般协议已经由国际原子能机构7,地球观测卫星委员会8,联邦机构报告9和美国国家气候学家协会10制定,但关于安装,维护,质量控制和验证SWC数据的具体指导有限。 探针。这使得采用此类技术成为运营监控网络(如状态 Mesonets)增加 SWC 测量的挑战。同样,对于河流预报中心等业务水文学家来说,将这些数据纳入其工作流程也具有挑战性。本录像和随附论文的目的是为埋入 式 SWC探头提供此类指导并记录一个有凝聚力的安装协议。
选择原位土壤湿度监测的位置
任何感兴趣区域 (AOI) 内的土壤通过地形、生态、地质和气候之间随时间推移的独特和耦合反馈形成11,12。SWC在不同景观中的可变性使得选址成为任何土壤湿度研究的关键方面。对于某些研究目标,可以选择一个地点来代表景观或生态系统上的特定特征或微型地点。为了监测网络的目的,该地点应在空间上代表更大的景观组成部分。目标是找到一个提供AOI最佳空间表示的位置。在现场,必须达到更务实的考虑因素,例如其他气象仪器的要求、可及性或介电导数。然而,AOI内的主要土壤图单元通常是较大区域环境条件的良好空间表示13。主要土壤地图单位可以使用网络土壤调查(https://websoilsurvey.sc.egov.usda.gov/)确定;该土壤地图单元也应使用浅坑或测试孔进行验证。
一个典型的监测站可以占用5-50 m2,具体取决于传感器需求和辅助测量的数量。 图 1 描绘了一个典型的监测站,该塔有一个 3 m 的塔,该塔装有风速和风向的风速计、一个空气温度和相对湿度传感器、一个用于太阳辐射的日射强度计,以及一个美国国家电气制造商协会 (NEMA) 耐候和防水外壳(NEMA 等级 4)。NEMA外壳容纳数据控制平台(DCP),蜂窝调制解调器,太阳能电池板充电调节器,电池和其他相关硬件(见 材料表;系统组件)。该塔还为通信天线、太阳能电池板和避雷针提供了一个平台。通常还包括液体沉淀(PPT)测厚仪,应将其放置在远离塔架的位置,并尽可能降低海拔,以减少风对PPT捕获的影响。SWC传感器应安装在足够远的距离(3-4米)和上坡处,以便塔对降雨或陆流没有潜在的干扰。任何相关电缆都应埋在地表以下至少 5 厘米的导管中。
图 1:典型的监测站。 美国农业部 SCAN 每小时收集有关标准深度(5、10、20、50 和 100 厘米)的土壤含水量和温度、气温、相对湿度、太阳辐射、风速和风向、降水和气压的信息。美国有 200 多个 SCAN 站点。缩写:SCAN = 土壤气候分析网络;NEMA = 国家电气制造商协会。 请点击此处查看此图的大图。
传感器的测量深度、方向和数量
原位SWC传感器通常水平安装,以表示土壤中的特定深度(图2)。由联邦政府资助的国家网络,如土壤气候网络 (SCAN)14、雪遥测网络 (SNOTEL)15 和美国气候参考网络 (USCRN)16,测量 5、10、20、50 和 100 厘米的 SWC。由于各种原因,在 SCAN 开发过程中通过共识达成了这些深度。5厘米的深度对应于遥感能力17;10 和 20 厘米深度是土壤温度的历史测量值18;50 和 100 厘米深度完成根区土壤储水。
探头可以垂直、水平或倾斜/倾斜定向(图 3)。水平安装是最常见的,以实现离散深度的均匀土壤温度测量。虽然传感器可能以离散深度为中心,但SWC测量是围绕尖齿(即电极)的体积,其可能随湿度水平、测量频率和安装几何形状(水平、垂直或倾斜)而变化。对于水平安装,感应体积将深度上方和下方的水分整合在一起,并且 95% 的感应体积通常在尖齿19 的 3 cm 以内。垂直或倾斜安装沿尖齿集成SWC,因此垂直安装可以表示沿传感器深度20的整个长度的存储。有些传感器不能沿其齿均匀测量。例如,传输线振荡器对产生电磁脉冲的探头附近的水分更敏感21。垂直安装更适合温度和湿度梯度趋于减小的更深探头。
图 2: 原位 SWC 传感器的安装。 使用(A,B)零深度参考夹具和(C)零深度板或(D)零深度铲手柄作为参考,在所选深度水平传感器放置。 请点击此处查看此图的大图。
图 3:探头垂直、水平或倾斜方向 。 (A) 倾斜和垂直插入和 (B) 三色 SWC 传感器的水平-垂直插入和水平-水平插入中心深度。缩写:SWC = 土壤含水量。 请点击此处查看此图的大图。
安装到小于 50 厘米的深度相对直观,而更深的传感器需要稍微多一些努力。根区 SWC 或剖面土壤储水量通常需要测量 1 或 2 米。如本协议所示,0-50厘米的安装是在挖掘的坑或螺旋钻孔中完成的,探头水平安装到未受干扰的土壤中,从而最大限度地减少表面干扰。对于更深的传感器(例如 100 cm),SCAN 和 USCRN 都使用延长杆将传感器垂直安装在单独的手动螺旋钻孔中(图 4)。
鉴于SWC的异质性,特别是在表面附近,以及传感器的小测量体积,三次测量可以更好地表示SWC。然而,对于大多数网络(例如,SCAN 和 SNOTEL), 原位 传感器的一个配置文件是典型的。USCRN使用间隔3-4米的三个剖面在每个深度进行三次测量16。此外,如果有财政资源,测量冗余会增加台站记录的弹性和连续性。
图 4:传感器的安装 。 (A)浅层传感器通常水平安装在挖掘的土坑的侧壁上。对于更深的传感器,(B)使用手动螺旋钻使用零深度参考(例如,横跨沟渠的木材)将孔挖到深处,并且使用(C)在安装过程中修改为固定传感器和电缆而修改的PVC管的一部分或(D)安装工具将传感器垂直推入孔的底部。土壤层被记录为表土(A地层)和具有易位粘土(Bt)和碳酸盐堆积(Bk)的底土层。 请点击此处查看此图的大图。
原位 SWC 传感器类型
市售传感器根据测量到的对沿与土壤直接接触的尖齿传播的电磁信号的响应来推断SWC。根据传播的电磁信号类型和测量响应的方法,埋入式传感器分为五类:电容、阻抗、时域反射计、时域透射计和传输线振荡(补充表S1,附有每个制造商信息的链接)。这些技术倾向于按工作频率和制造商进行分组。较长的尖齿整合了更大的土壤体积;然而,它们可能更难插入,并且在具有粘土和更高体积电导率 (BEC) 的土壤中更容易受到信号损失的影响。制造商报告的SWC测量误差为0.02-0.03 m3m−3,而用户通常发现这些误差明显更大23。电磁传感器的正确校准和标准化提高了性能22;但是,这些特定于土壤的校准超出了该协议的范围,该协议侧重于安装。
传感器的选择应考虑所需的输出、测量方法、工作频率以及与其他测量的兼容性。在2010年之前,大多数SWC传感器都是模拟的,需要DCP测量差分电压、电阻或脉冲计数,这需要更昂贵的组件和每个传感器的单个通道(或多路复用器)。现在,1,200波特(SDI-12)通信协议(http://www.sdi-12.org/)的串行数据接口允许智能传感器实现内部测量算法,然后通过单根通信电缆传输数字数据。每个传感器可以使用通过杠杆螺母或接线端子连接器(图 5)连接的公共电线按顺序连接在一起(即菊花链),每个传感器具有唯一的 SDI-12 地址(0-9、a-z 和 A-Z)。SDI-12传感器的通用通信线与电源线和地线一起形成单个电路。不需要多路复用器或DCP的任何测量;相反,DCP 只是发送和接收数字命令和文本行。许多SDI-12 SWC传感器还包括土壤温度、相对介电常数(ε)和BEC测量。这种测量对于传感器诊断和土壤特定校准非常有用。此时,用户已选择站点,确定传感器类型、数量和深度,并获得所有必要的硬件和现场工具(材料表)。因此,他们可以继续安装协议。
图 5:用于将公共电源、接地和通信电线连接到数据收集平台上的单个输入的电线接头连接器和接线端子。 请点击此处查看此图的大图。
1. 传感器的预安装准备
2. 确定字段布局
3.土坑开挖
注意:土坑可以手动或机械挖掘。目标是尽量减少整体场地干扰。
4. 组装/安装仪器支架和外壳
注意:仪器支架有三个选项:简单的杆子、三脚架或塔式。对于带有PPT量具的基本土壤湿度站,带腿的镀锌钢杆或不锈钢仪器架(120厘米高)就足够了。对于基本的气象测量,需要更高的桅杆在 2 m 处安装传感器。大多数介生动物喜欢10米高的塔;但是,这样的塔超出了该协议的范围。
5. 土壤表征和样品采集
注意:直观地表征土壤对于在安装后解释土壤湿度动态至关重要。样本收集可以帮助使用定量数据进行解释。即使资金不可用或内部设施无法处理样本,也要收集样本。风干并存档,以防将来需要土壤表征。
6. 水平插入 5、10、20 和 50 cm 探头
注意: 目标是确保传感器齿周围的土壤完全接触,避免任何气隙。
图 6:元数据的示例 照片。 (A)仪器土坑用卷尺进行刻度,(B)挖掘回仪器桅杆的电缆沟,以及最终现场照片朝向(C)北和(D)南。 请点击此处查看此图的大图。
7. 垂直插入 100 cm 探头
8. 完成传感器安装和连接到 DCP
9. 辅助传感器和硬件设置
10.Site 完成
11.记录台站元数据,数据背后的数据23
注意:在安装和每次现场访问时记录元数据(请参阅 表 1)。一致的元数据报告支持不断增长的实践社区,对于确保数据和网络完整性至关重要。
表 1:用于土壤湿度数据收集的台站元数据。 缩写:12 月 = 减少;GPS = 全球定位系统;3DEP = 3D 高程计划;运维=运维;SSURGO = 土壤调查地理数据库;Mukey = 映射单位键。 请按此下载此表格。
12. 操作和维护
注意:应在元数据记录中添加详细的维护日志,包括传感器更换、植被健康或变化或任何站点干扰。
表 2:维护计划示例。 缩写:DCP = 数据控制平台。 请按此下载此表格。
SCAN 网络始于 1991 年,是 NRCS 的一个试点项目。它是运行时间最长的SWC数据收集网络15,也是该协议中代表性结果的基础。所有 SCAN 站点最初都从模拟电容传感器开始。该协议的视频组件中使用的马里兰州贝尔茨维尔的现场安装站点 (SCAN 2049) 监测(图 7A) 每小时空气和土壤温度以及 (图 7B) 每小时 SWC,深度为 5、10、20、50 和 100 厘米。每日PPT,土壤储水量(SWS)至20厘米,及其随时间变化(dSWS)如图7C所示。对于每个PPT事件,随着湿锋在重力作用下向下传播,地表附近(5和10 cm)的SWC急剧增加,并且在更深的深度上衰减和延迟增加。在 2022 年 2 月初和 4 月的事件中,100 厘米处最深的传感器达到了 0.33 m 3/m3 的高原,并持续了几天。这种情况表明饱和持续时间短。表征数据(表3)显示的土壤地平线干容积密度为1.73 g/cm3,估计孔隙度(φ)为0.35 [-],为孔隙空间完全充满水提供了额外的证据。鉴于土壤剖面的砂质壤土/壤质沙子,饱和条件很可能是由排水不良或浅水位抑制排水造成的。请注意,直到四月,该站点的大多数晚上的气温都会降至冰点以下;然而,土壤温度保持在2°C以上,SWC数据中没有迹象表明任何深度都有冻结的水。
图 7:位于马里兰州贝尔茨维尔的现场工作站 (SCAN 2049) 的示例结果。 (A)每小时空气和土壤温度,(B)每小时SWC,(C)日降水量,土壤储水量至20厘米,及其随时间的变化。缩写:SWC = 土壤含水量;PPT = 降水;SWS = 土壤储水;dSWS = SWS 随时间推移的差异。 请点击此处查看此图的大图。
表3:代表性结果中提供的数据示例的场地数据和土壤特征。 以图和表格形式提供的所有数据均从NRCS在线数据库中检索,网址为每个站点注明。桌山(#808)的土壤特征数据不可用。缩写:NRCS = 自然资源保护局;URL = 统一资源定位器;c = 粘土;FSL = 细沙壤土;ls = 壤质沙;s = 沙子;sc = 沙质粘土;SCL = 沙质粘壤土;si = 淤泥;sil = 粉质壤土;SL = 沙壤土;nd = 无数据;BD = 堆积密度 33 kPa。 请按此下载此表格。
图 8 显示了密西西比州 Yazoo 附近的 SCAN 位置 (2110) 的更极端的饱和度示例。土壤的粘土含量非常高(60%以上),堆积密度低,范围为1.06至1.23克/厘米3,φ为0.54至0.60[-](表3)。2020 年 4 月 13 日发生的第一次 ~40 mm PPT 事件连续 12 天在所有深度将土壤饱和至 >0.60 m 3/m 3 的 SWC,数值非常接近测量φ。2020年4月20日发生的第二次70毫米/天事件对dSWS没有影响,表明饱和超额径流。2020 年 11 月也出现了类似的饱和期。虽然在100厘米处没有测量,但50厘米处的SWC稳定在0.39 m 3 / m 3,除了夏末,它小幅下降到0.36 m 3 / m 3。现场说明(补充表S2)表明使用了"壤土"传感器特定的校准31,就像大多数SCAN和USCRN站点中使用的电容传感器一样。这两个例子都说明了在场地表征(步骤5)期间收集的土壤表征和BD数据对SWC数据解释的重要性。
图 8:位于密西西比州亚祖附近的潮湿温带站点 (SCAN 2110) 的示例结果 。 (A)每小时空气和土壤温度,(B)每小时SWC,以及(C)每日降水量和土壤储水量的变化。缩写:SWC = 土壤含水量;PPT = 降水;SWS = 土壤储水;dSWS = SWS 随时间推移的差异。 请点击此处查看此图的大图。
图9显示了五个深度的原位SWC的更直接的时间序列,其中五个润湿事件导致润湿锋在土壤剖面中向下的顺序传播。该 SCAN 站点 (2189) 位于加利福尼亚州圣路易斯奥比斯波附近,位于地中海气候中,春季潮湿,夏季漫长干燥,位于沙质壤土上,φ值为 0.37 至 0.51 [-](表 3)。对土壤表面润湿的响应较快,且随深度的增大而减小。5天内的最后一个大型PPT事件足以在50厘米和100厘米的深度显示反应。随着深度的增加,土壤温度幅值的昼夜周期减小,最大值和最小温度的时间进一步落后于气温和较浅的深度(图9A)。虽然这些特性可用于区分传感器深度,但如下一节所述,对5和10 cm深度处SWC的波动也有显着影响。SWC振幅在5厘米处为~0.02 m 3/m 3,在10厘米处为~0.01 m 3/m 3,在更深的传感器中可以忽略不计。它也与土壤温度同相,传感器中更有可能由温度波动引起的噪声,不太可能是土壤湿度或实际降水的任何物理运动的结果。这个较干燥的地点(2189)的土壤温度昼夜变化比更中间的现场安装地点(2049)大得多,SWC数据中没有温度噪声(图7B)。
图 9:位于加利福尼亚州圣路易斯奥比斯波附近的半干旱地中海站点 (SCAN 2189) 的示例结果 。 (A)每小时空气和土壤温度,(B)每小时SWC,以及(C)每日降水量和土壤储水量的变化。缩写:SWC = 土壤含水量;PPT = 降水;SWS = 土壤储水;dSWS = SWS 随时间推移的差异。 请点击此处查看此图的大图。
图10显示了冻土和积雪中存在的更具挑战性的SWC数据解释之一。该地点(808)位于蒙大拿州博斯曼附近,海拔4,474英尺。在2020年冬季(12月,1月和2月),每日气温偶尔会超过冰点温度。直到3月,土壤温度一直保持在0°C以上。表面积雪的存在将使土壤免受气温变化的影响。此外,在潮湿的土壤中,潜热的释放和能量的消耗,伴随着与冻融循环相关的相变过程,缓冲土壤温度,使它们非常接近0°C,直到这些相变完成。冰冻土壤中的小冰ε表现为SWC急剧减少,然后在解冻期间增加,没有任何PPT迹象。这在12月中旬和3月中旬最为明显,当时气温迅速下降,5和10厘米处的SWC下降3天,然后反弹。11月中旬,100厘米处的土壤温度达到冰点,整个冬季都处于较低的SWC,在春季解冻期间没有变化,表明它可能出现故障。然而,其他传感器中的快速下降和恢复可能是也可能不是液态土壤水的真正变化;如果没有对积雪的存在或深度进行辅助测量,解释这些数据可能极具挑战性。通常,处于或低于冰点的SWC数据在质量控制中被审查。有关接近冰点的土壤温度的更多讨论在数据记录质量控制部分。
图 10:位于蒙大拿州三叉附近的半干旱高山站点 (SCAN 808) 的示例结果 。 (A)每小时空气和土壤温度,(B)每小时SWC,以及(C)每日降水和土壤储水量的变化。缩写:SWC = 土壤含水量;PPT = 降水;SWS = 土壤储水;dSWS = SWS 随时间推移的差异。 请点击此处查看此图的大图。
其他示例和表征数据是从 SCAN 数据库中提取的(统一资源定位器 [URL] 参见 表 3 )。这些数据的报告和质量控制需要一些解释,以确定是否存在解释任何不稳定行为的物理机制。我们的解释缺乏任何本地现场知识,尽管多年来一直在评估SWC时间序列,但从故障或不良的传感器或安装中评估好的传感器或安装仍然具有挑战性。
图 11 显示了问题数据记录的常见示例,这些记录是在 2020 年至 2021 年间从 40 个 SCAN 站点中随机选取的。最常见的错误包括峰值(图11A)和向上(图11B)或向下(图11C)的阶跃变化,如国际土壤湿度网络32所标记的那样。对于其中的每一个,没有并发的PPT事件来解释这些变化,它们可以被认为是错误的。当只查看每日平均值时,瞬时峰值或低谷的问题变得更加复杂,这可能会隐藏此类事件。最好在进行任何均值计算之前删除它们。阶跃变化的开始和结束可能很明显,但很难在两者之间填充任何数据。我们在此协议中不处理数据填充,而只是标记错误数据。不稳定的行为(图11D)表现为剧烈波动,对PPT事件没有任何反应。在某些情况下,在接线检查和多路复用器更换后,尖峰可能会消失,如2020年8月之后的图11A所示。更常见的是,不稳定的行为是传感器故障的前奏,如图11E所示。深度为 10 厘米的传感器在 1 月份发出了行为不稳定的合理警告,并在 3 月下旬出现故障。然而,5厘米深的传感器在2021年3月1日没有警告的情况下出现故障。
图 11:问题记录示例。 (A) SCAN 2084,阿肯色州Uapb-Marianna,显示5厘米处的周期性下降, (B) SCAN 2015,亚当斯牧场#1,新墨西哥州,在50厘米深度处有积极的阶跃变化, (C) SCAN 808,蒙大拿州桌山,向下的阶梯变化,尖峰,甚至在 50 厘米深度恢复,(DSCAN 2006,德克萨斯州布什兰#1,显示5厘米或10厘米传感器对降水事件没有反应,10厘米传感器恢复了一些,随后两者都出现了明显的故障,(E)SCAN 2027,佐治亚州小河,20厘米处的传感器毛刺,5厘米和20厘米深度的灾难性故障。传感器深度表示为 5 厘米(黑色)、10 厘米(蓝色)、20 厘米(橙色)、50 厘米(深灰色)和 100 厘米(黄色)。缩写:SWC = 土壤含水量;PPT = 降水。 请点击此处查看此图的大图。
在SCAN 2084,该站点于2004年2月6日开始记录数据,并记录了与SDI-12多路复用器相关的一些不稳定行为,这些行为被多次更换(补充表S2)。但是,传感器是原装的,并且在18年后仍然起作用。在 SCAN 2015 上,数据收集于 1993 年 10 月 25 日开始, 图 11B 中的 50 cm 传感器在 2017 年被认为是可疑的(补充表 S2)。最古老的站点 SCAN 808 于 1986 年 9 月 30 日开始报告,并于 2006 年 10 月 25 日转换为 SCAN 站;迄今为止,它没有更换任何传感器。 如图 11E 所示,异常并不总是导致故障,因为 图 10 具有合理的数据。SCAN 2006 于 1993 年 10 月 1 日开始报告; 图 11D 中原来的 5 和 10 cm 传感器于 2022 年 1 月 24 日更换。SCAN 2027 于 1999 年 5 月 19 日开始报告; 图 11E 中原来的 5 和 10 cm 传感器于 2021 年 8 月 13 日更换。如前所述,SCAN 站点从模拟电容传感器开始。其中许多传感器已经使用了20多年,虽然不一定产生最高质量的数据,但仍然保持功能。对于从业者来说,确定更换传感器的点仍然是一个悬而未决的问题。 图11 中场地的场地元数据和土壤特性可在 补充表S3中找到。
数据上报
连续原位SWC传感器每个时间记录间隔报告三到六个值。除了任何辅助测量外,SWC传感器的长期部署还会产生大量需要存储和交付的单位值数据。环境测量以离散的采样间隔进行,这些间隔随时间聚合并报告为数据记录。大气测量采样频率因测量而异;对于风和太阳辐射测量(<10 s),它更大,对于空气温度和湿度(60 s)30。这些样本值在5分钟到1小时的报告间隔内平均或累积。同样,SWC可以在报告间隔即时采样或采样(例如,每5分钟一次),并平均为30分钟或60分钟的平均值,因为相比之下SWC的动态相对较慢。尽管更频繁采样的平均值可以降低温度波动、电气干扰和固有传感器可变性造成的噪声,但不建议这样做,因为如前所述,数据尖峰可能会使平均值偏斜。大多数SWC数据记录可以满足每小时的传感,但对于具有较高速度排水条件(沙质土壤)和密集PPT(季风条件)的区域,一些网络以20分钟的时间间隔记录以完全捕获降雨事件。最后,数据传输或遥测可能受到技术(例如卫星系统)的限制,或者具有基于数据大小和频率的成本层。优化报告间隔和遥测变量有助于控制成本。例如,传输原始值(例如,ε或计数)优先于可以在后处理中计算的派生值(例如,SWC)。数据分辨率也会影响遥测包大小;但是,重要的是将SWC表示为分辨率为0.1%的百分比(0.0-100.0%)或分辨率为0.001 m 3m-3的小数(0.00-1.00)。以m 3 m-3为单位的十进制版本非常优选,以避免在以后的分析和报告中与含水量的百分比变化混淆,并避免与质量基础含水量(g/g)混淆,后者也可以报告为含水量百分比。土壤温度、ε和BEC通常分别报告为0.1 °C、0.1 [-]和0.1 dS m-1分辨率。
数据记录质量控制
数据记录质量控制过程验证数据并记录其质量。准确的现场记录和校准日志对于处理数据记录至关重要。处理记录的典型步骤是初始评估、删除明显的错误数据、应用任何派生值计算或更正以及最终数据评估。SWC 记录通常由信号(例如,ε、计数或 mV)、土壤温度和 BEC 组成,这些信号在不同程度上用于推导 SWC。传感器还可以输出制造商衍生的 SWC。但是,没有传感器直接测量SWC;此计算可以是数据计算步骤的一部分,前提是适当的校准公式可用并成为元数据记录的一部分。记录可以是瞬时测量值,也可以是一段时间内的平均值。希望保留原始数据,以便可以计算出最合适的格式以进行质量控制,并且可以将校准方程或传感器理解的改进应用于原始数据。传感器特性应决定是记录瞬时值还是多个读数的平均值,尽管出于前面给出的原因,首选瞬时值。
有几种方法可以将辅助数据(请参阅下面的数据验证)纳入质量控制工作流程。降水是第一个检查 - "降雨事件后SWC是否增加?在某些情况下,SWC可以在没有PPT的情况下增加(例如,融雪,地下水排放,灌溉)。第二项检查是将土壤储水量的变化与特定事件的PPT总量进行比较(图7C)。理想情况下,此事件应是孤立的低强度降雨事件。降水从地表渗入土壤并向下渗透。SWC的峰值应遵循类似的向下模式(图7B)。然而,优先流动会导致渗水绕过浅层传感器或在较深的传感器上引起快速响应。虽然这些可能是"真实"响应,但安装沟渠或单个传感器周围的压实度差会优先将水流向传感器。在解释对降雨或融雪事件的异常反应时,应谨慎使用湿润前到达时的偏差和常识。如 表3所示,BD规定了矿物土壤中土壤孔隙空间的上限,φ[-]。水含量通常大于φ表明传感器出现故障或传感器校准不当。在前一种情况下,数据可能会从记录中删除。在后一种情况下,重新校准可能允许保留记录,并根据重新校准修改值。
土壤温度是另一个有助于质量控制数据的变量。土壤温度在土柱中向下传播并随深度衰减(图7A)。随着传感器深度的增加,温度应该更早达到峰值,靠近表面的温度应该更高,从表面峰值开始的滞后时间也会增加。任何无序传感器滞后都可能表示深度识别错误或SDI-12地址不正确。如图10所示,电磁传感器依赖于ε的变化,其范围从冰的~3到水的~80。水和冰之间的变化由SWC传感器记录。但是,由于传感器的感应体积与土壤温度热敏电阻的感应体积不同,阈值可能高达4°C,因此可能需要提高标记阈值。 由于冻结程度和液态水的相对量对于评估土壤水文可能很重要,因此这些数据应标记为受冻结影响,而不必删除。在最基本的层面上,质量控制应该合理化任何不稳定的传感器对某些物理机制的响应,否则就是一个错误。尽管自动化质量控制例程是大型网络和不同数据源13、33、34、35 的要求,但无法替代数据关注来保持长期数据质量。
数据验证
SWC数据最具挑战性的方面之一是验证 - "传感器是否提供良好和准确的数据?大多数环境传感器在部署后都可以使用,并且可以在一段时间后更换为新传感器,返回制造商或实验室根据标准重新校准,和/或根据从现场收集的样品验证数据。气象组织遵循严格的大气传感器程序,包括传感器旋转、传感器维护和现场校准,允许预防性维护作为数据验证的第一道通过10,30。SWC传感器埋 在原位 ,无法在不造成严重现场干扰和传感器潜在损坏的情况下进行审核或重新校准。此外,SWC传感器没有公认的标准,因此,数据验证需要对预期的传感器响应有一定的了解,并对传感器本身有一定的信心。两者都需要实地遵循的实践经验和最佳做法(即现场维护和检查)。如果异常性能问题( 如图11所示)长期存在,则传感器很有可能出现故障,应更换。
电磁传感器没有移动部件,电线和电路往往很坚固。3年后,德克萨斯州土壤观测网报告传输线振荡器传感器的故障率为2%21.经过10多年的服务,美国气候响应网络报告说,从2014年到2017年,阻抗传感器的故障率显着增加,每100个探头中有15-18个探头36。 如图 11 所示,大多数 SCAN 传感器在发生故障前已使用 20 多年。最好在故障前更换传感器,以便可以在空气、水和沙子中重新评估传感器,以检查相对于部署前值的漂移(例如,步骤 1)以及其他原因。使用SWC传感器进行常规更换有些不切实际,在大型网络中也很少进行,而且我们不知道对电磁SWC传感器随时间变化的任何长期评估。USCRN网络在使用电容传感器超过10年后,目前正在迁移到新的传感器技术。计划是新旧传感器之间至少有2年的重叠,以进行任何调整。
定期维护访问应包括验证SWC数据,最好是在各种湿度条件下。这可以使用便携式传感器间接完成,理想情况下校准到一些土壤样品或直接校准到现场收集的体积土壤岩心。最好的方法是将原 位 传感器读数与等效深度37 的体积土壤样品的 SWC 进行比较(图 12)。定期维护应尝试覆盖一系列土壤湿度条件,以便可以比较直接/间接SWC测量和重合传感器读数之间的简单回归。可以在螺旋钻孔或机械取芯装置中进行更深的土壤取样。对表面传感器(例如,5 和 10 cm)的验证可能就足够了,因为更深的传感器应遵循与 PPT 类似的特性响应,如前所述。这种事后SWC评估有几个局限性。主要缺点是体积样品不能(也不应该)直接在传感器上采集,并且可能无法真正代表尖齿周围(3 cm以内)传感体积内的SWC。这导致了第二个缺点;可能需要更多的采样位置和深度才能获得具有代表性的现场SWC值。这也可能导致场地周围出现很多孔洞和干扰。第三个缺点是难以在不破坏土壤剖面的挖掘的情况下获得深度体积土壤样本。
图 12:体积 SWC 数据。 来自60 cm3 个土壤岩心的SWC数据作为现场校准数据,与来自15、30、45和60 cm深度的 原位 传感器的SWC数据进行了比较,纹理范围从壤土、细沙到粘土。这个数字改编自Evett等人37。缩写:SWC = 土壤含水量。 请点击此处查看此图的大图。
NRCS开发了一种螺旋钻孔中的土壤采样方法,该方法使用延长杆上的体积采样管(Madera式探头)用于螺旋钻孔38底部的样品。这些直接测量也可以与来自便携式传感器37,39,40的间接测量相结合,以提供对原位传感器13,41的空间代表性的校准评估。如协议步骤10.10中所述,可以重复此过程以允许某些度量(例如,均方根误差,偏差,相关性)来确定原位传感器与SWC的直接采样或间接估计的任何最近偏差。国际原子能机构第七届会议也提供了更多细节。步骤 3 和 5 中提供的土壤挖掘和表征数据也提供了φ数据(SWC 不应超过此值)。土壤质地和地平线说明了高/低电导率和土壤保水性的区域。这些步骤非常符合森林土壤采样协议25。所需的代表性尺度可用于收集验证数据集,此后,可以将台站缩放到经过验证的足迹42。如果更换台站传感器类型,则在各种土壤水条件下收集另一组验证数据以再次捕获安装偏差是合理的。
辅助数据集可以帮助验证和评估SWC数据。很明显,使用现场PPT量具可以验证事件的时间,持续时间和规模,从而大大改善了水文时间序列。土壤基质电位传感器提供土壤水的能量状态,这对于量化植物可用水量至关重要。气象传感器,包括气温、相对湿度、风速和太阳辐照度,可以直接计算参考蒸散量(ET),这是植物相对吸水的有用指南,因此土壤干燥率43。多种经济型一体化天气传感器提供 SDI-12 输出。来自压力传感器的地下水位信息是另一个有价值的测量,如果地下水位接近地表并且可以安装监测井。最后,现场摄像机可以提供科学价值和站点安全价值。数字图像可以记录植被生长和绿度44,无需实地考察即可评估台站的总体状况。
补充表S1:常见(但不包括) 原位 SWC传感器技术。 请点击此处下载此文件。
补充表S2:从NRCS在线数据库中提取的本协议中所有站点的传感器历史日志。 通过每个 URL 提供的数据。 请点击此处下载此文件。
补充表S3:图11所示数据示例的场地数据和土壤特征。请点击此处下载此文件。
土壤湿度状态是许多不同的环境因素的结果,包括降水、植被、太阳辐照度和相对湿度,以及土壤水力和物理性质。它们在不同的空间和时间尺度上相互作用。为了对水、能源和碳循环进行建模和预测,有必要了解SWC状态。最常见的自动测量技术类型之一是电磁SWC传感器,其尖齿旨在 原位 插入未受干扰的土壤中。该协议旨在为安装这些常见类型的可埋藏传感器的过程提供指导。精度、性能和成本通常与传感器的工作频率成正比;低频传感器成本较低,但更容易受到土壤和环境因素的影响45.土壤或特定地点的校准可以提高低频传感器的精度。由于电磁场(EMF)的基本物理特性,测量方法也会影响传感器性能。
两个主要的电磁物理定律控制着电磁传感。一个是高斯定律,它描述了传感器的传播EMF如何依赖于介质的ε和BEC。然而,介电常数随着SWC的增加而增加,BEC也是如此。因此,依赖于高斯定律的传感器会受到SWC、BEC和温度对BEC的影响,以及盐度的任何干扰。电容传感方法遵循高斯定律,因此更容易受到这些影响46.此外,高斯定律描述了电容对几何因子的依赖性,几何因子随土壤中电动势的形状而变化。研究表明,EMF形状随土壤结构和传感器尖齿周围含水量的小规模空间变化而变化。大多数土壤的含水量和土壤结构的小尺度空间变异性较大,导致几何因子变化和随之而来的电容变化,与土壤水分含量的体积平均变化关系不大。这些因素会降低电容传感器的精度并增加数据可变性46,47,48。阻抗和传输线振荡方法也取决于高斯定律,而时域反射计和时域透偏计方法取决于麦克斯韦方程组,麦克斯韦方程组不包括几何因子,也不依赖于BEC。虽然没有传感器是没有问题的,但时域方法往往比基于电容或阻抗的方法更精确,偏差更小。
该过程有几个关键步骤。对于稀疏网络,需要正确的选址和传感器位置,以获得最合适的SWC空间表示。选址可能更多地受到外部因素的影响,例如土地通道或其他大气监测要求,其中土壤湿度是辅助测量。中尺度气象站点位于宽阔开阔、修剪整齐的草地上,以尽量减少任何微观尺度的影响。这些位置可能不太适合 SWC 监测。如果适用,应考虑无线传感器技术49,50,51,52,53,以允许SWC监测在远离现有环境监测站和代表性土壤中进行。围绕活跃的农场运营和灌溉设备开展工作具有挑战性。大多数网络(例如,SCAN 和 USDA-ARS)都位于田地的边缘,以避免耕作活动,例如可以切断电缆和挖掘传感器的犁或收割机。任何原位传感器和电缆都需要充分埋入,并且具有足够低的表面轮廓,以避免推断农场操作。无线系统53和可移动钻孔传感器47可能更合适。使用大规模的土壤水分灌溉54进行地下水保护是SWC传感器的一个不断增长的领域;该协议涉及未受干扰土壤中具有空间代表性的长期SWC数据。
有些土壤比其他土壤更难测量。在岩石、砾石或非常干燥的土壤中,可能不可能在不损坏的情况下插入尖齿。一种选择是挖掘土坑并在回填时将传感器放置到位,试图压实到原始BD。 岩石土壤往往几乎没有结构,经过几次润湿和干燥循环后可能会愈合;然而,这种干扰可能永远不能真正代表该地点的土壤水文。或者,如果传感器安装在螺旋钻孔的底部,则可以筛分去除的土壤以去除石头,并在孔中重新包装,刚好足够深以容纳传感器齿。然后可以垂直安装传感器,并用剩余的非筛土重新填充螺旋钻孔,并在添加土壤时频繁压实。
森林土壤中的根对探针插入提出了类似的挑战,但是在某些情况下可以切断根。森林土壤通常在矿物土壤顶部具有有机(O)层,其BD非常低,比表面积高,大量的结合水导致在较高的SWC55下产生非常非线性的传感器响应。此外,从业者将零基准面设置为O形地平线的顶部或矿物土壤 - 在元数据中注明其中。富含粘土的土壤和具有高收缩/膨胀潜力的膨胀粘土在潮湿时对电磁信号具有极强的导电性,在干燥时可能会开裂。这些土壤可能需要额外的校正才能从原始测量值中获得合理的SWC。在浅层土壤中,在达到理想的最大深度之前,可能会遇到基岩或限制性土壤层(例如,卡利切或硬质)。可能需要更改位置或根本不安装更深的传感器。过于干燥或潮湿的土壤可能具有挑战性,最好选择极端季节之外的安装日期。干燥的土壤可能非常坚固,并且可能无法在不损坏的情况下插入传感器。如有必要,可以用水填充预钻孔以软化坑面,尽管土壤恢复到自然状态可能需要一些时间。潮湿的土壤可能太弱而无法支撑坑面,或者沟渠可能充满水。湿土壤也更容易过度压实。
传感器输出应包括介电常数,而不仅仅是SWC,以便以后可以进行校正或土壤特定校准。高频传感器更适合高BEC土壤,而较短的尖齿可能更容易安装在更紧凑的土壤中。然而,也许最关键的一步是土壤接触;接触不良会降低来自任何电磁传感器的信号。最后,回填挖掘听起来微不足道,但它是最大限度地减少优先流入传感器区域、保护电缆和阻止动物干扰该区域的关键。特定于土壤或地点的校准可以提高传感器的精度,但需要比该协议中可能更多的细节。将现场土壤调整或重新包装到不同的SWC水平是检查响应线性的理想选择,并且可以作为某些传感器类型的特定地点校准21。介电液体也可以是检查传感器响应的有效介质58。温控水浴可用于改善土壤温度校准59.该协议是建立 原位 SWC传感器安装标准操作程序的第一步,因为没有现有的方法,也没有任何公认的SWC传感器校准方法60,61。
虽然SWC监测一直是该协议的重点,但该方法具有局限性,仅靠SWC无法全面了解土壤水分状况。许多生态系统过程也受到土壤水势的调节,土壤水势不太常见于原位测量62。最近由S. Luo,N. Lu,C. Zhang和W. Likos 63审查的土壤水势是水的能量状态;这种传感器可能受土壤特性的影响较小,并为SWC传感器提供质量控制64。此外,散装场SWC包括砾石,岩石,根部和空隙空间(例如,优先流路)。 原位 SWC传感器通常重新定位在岩石和根部周围,有限的测量体积集中在尖齿周围,可能会错过散体场SWC的离散但重要的方面。
该协议有望为广泛的应用带来更加协调和统一的SWC数据,包括干旱监测,供水预测,流域管理,农业管理和作物规划。遥感平台4 的出现大大提高了全球SWC的估计能力,但这些产品需要地面验证,而地面验证仍然只能由 原位 网络65合理收集。计算机的进步使得超分辨率SWC建模66 得以开发,产生高分辨率和亚日常SWC状态,但这些产品还需要对SWC进行原位 估计,以便为计算不确定性提供一些基础。通常,在推出新产品时,第一个问题是"不确定性是什么?对于SWC产品,验证的主要比较是 原位 网络数据67。
最近与国家协调土壤湿度监测网络(NCSMMN)相关的网络扩展,包括美国陆军工程兵团上密苏里河流域土壤湿度项目和NOAA支持的美国东南部网络建设,所有这些都旨在改善水危害预测,监测和提供资源管理决策支持。只有通过全面的协议和程序才能实现此类应用程序的SWC估计的确定性和准确性,以提供对数据完整性的信心。NCSMMN是一项由联邦政府领导的多机构努力,旨在通过围绕土壤湿度测量,解释和应用建立一个实践社区来提供援助,指导和支持 - 一个连接数据提供者,研究人员和公众的"人网络"68。该协议是NCSMMN努力的产物。即将推出数据质量控制工作流程。
对贸易、公司或产品名称的任何使用仅用于描述目的,并不意味着美国政府的认可。本文是美国政府的作品,在美国属于公有领域。美国农业部是一个机会均等的雇主和提供者。
作者感谢NOAA-NIDIS,国家协调土壤湿度监测网络(NCSMMN)和USGS下一代水观测系统(NGWOS)计划的财政支持。我们感谢NCSMMN执行委员会成员,包括B. Baker,J. Bolten,S. Connelly,P. Goble,T. Ochsner,S. Quiring,M. Svoboda和M. Woloszyn对该协议的意见。我们感谢韦弗先生(美国地质调查局)对议定书草案的初步审查。
Name | Company | Catalog Number | Comments |
System components, essential | This system is the typcial micro-station used in the TxSON soil moisture network. The TxSON meteorlogical station is listed under optional components. https://acsess.onlinelibrary.wiley.com/doi/full/10.2136/vzj2019.04.0034 | ||
Battery, sealed rechargable 12 V 12 AH | Campbell Scientific | BP12 | 7 amp-hour (AH) minimum |
Charging regulator | Campbell Scientific | CH200 | Charge regulator, needed for any unregulated solar panel |
Conduit, schedule 40 PVC, 1 to 2" diameter | Any home supply store | Diameter sized appropriate to number of sensors and cable thickness. Length dependent on height of enclosure | |
Data aquistion software | Campbell Scientific | PC400 | Free versions with limited programability, for more basic applications, manual downloads and simple sensor configurations |
Data control platform | Campbell Scientific | CR300 | Any SDI-12 compatible DCP is sufficint. Many also have integrated cellular modems available |
Enclosure (NEMA), 10 x 12 inch, -DC 2 conduits for cables, -MM tripod mast mount | Campbell Scientific | ENC10/12-DC-MM | Two bottom conduits are required for above and below ground instruments |
Mounting pole (47 inch) with pedestal legs | Campbell Scientific | CM305-PL | Smaller footprint, not tall enough for weather sensors |
Rain Gage with 8 in. Orifice, 20 ft of cable | Campbell Scientific | TE525WS-L20-PT | Recommend installing rain gage on a separate vertical pole some distance from the instrument stand |
Sensors, 12 cm water content reflectometer, 17ft cable, -VS SDI-12 address varies | Campbell Scientific | CS655-17-PT-VS | See Supplement Table 1 for more options |
Solar panel, 20 W | Campbell Scientific | SP20 | Use higher wattage panels for northern sites and lower for southern sites with higher exposre |
System components, optional | |||
Cellular Antenna, 2 dB multiband omnidirectional | Campbell Scientific | 32262 | Directional antennas can improve signal, if the tower location is known. |
Cellular modem for Verizon/ATT | Campbell Scientific | CELL210/205 | Provider is site-dependent |
Crossarm mount, 4 feet | Campbell Scientific | CM204 | Ideal for mounting 2 m sensors |
Data aquistion software, advanced | Campbell Scientific | Loggernet | More advanced commercial sofware that includes remote communications options and advanced programming |
DIN Rail Perforated Steel | Phoenix Contact | 1207639 | Used to mount terminal blocks inside enclosure |
Galvanized steel water pipe, 1.5 or 2 inch diameter, 10 ft in length | Any home supply store | The most economical option for an instrument mast. Can be cut to length. Replaces the 47 inch mounting pole with legs | |
Instrument tripod, 10 foot stainless-Steel with grounding kit | Campbell Scientific | CM110 | Taller instrument stand for 2 m meteorologic sensors |
Lever nut connectors, five ports (Figure 5) | Digi-Key | 222-415/VE00/1000 | Connect one SDI-12 wire to 4 sensor wires. Alternative to DIN rail. |
Null modem cable | Campbell Scientific | 18663 | Inteface cable between DCP with modem. Not required for integrated cellular modems |
Plug-in bridge - FBS 3-5 | Phoenix Contact | 3030174 | Used to connect the curcuit of multiple terminal blocks. Available at mouser.com |
Secure Set Foam, 10 Post Kit (2 gallon) | Any home supply store | Altnerative to concrete when using a steel pipe mast or for precipation gage pole. Two part foam mixture | |
Sensor, air temperature and relative humidity, 10 ft cable | Campbell Scientific | HygroVUE10-10-PT | Lower accuracy and pression option. Replacable chips are the fastest means to meet annual calibration cycles. |
Sensor, solar radiation pyranometer, digital thermopile | Campbell Scientific | CS320 | Most inexpensive, ISO class C (second class). Better options are available but much more expensive |
Sensor, wind speed anemometer, 10 ft cable | Met One | 014A-10 | More expensive options include wind direction, or sonic sensors with no moving parts |
Solar shield for air temperature and relative humidity sensor | Campbell Scientific | RAD10E | All air temperature sensors require sheilded from the sun |
Terminal blocks (Figure 5), feed-through | Phoenix Contact | 3064085 | The most secure method to connect multiple SDI-12 sensor wires. Available at mouser.com |
Field tools, essential | |||
Freezer bags: quart and gallon sized | Any grocery store | Storage for soil samples collected for characterization | |
Miscellaneous digging tools including hand trowl, flat spade, and pointed spade | Any home supply store | Backup tools to aid excavation' | |
Shovel (Sharpshooter) 16 in. D-handle drain spade | Razorback | Manual tool for excavating soil pit. Any narrow pointed spade will work. | |
Shovel, trenching, 4 in wide steel blade | Any home supply store | Ideal trenching tool for burying cable or conduit | |
Soil auger (<4 in diameter) with T-handle or and extension bar as needed for r test holes | AMS Samplers | 400.06 | Recommended for test holes. The auger type should match soil, but 'regular' performs well in most soils |
Tarp (plastic) or plywood sheet | Any home supply store | Soil management during excavation and trenching | |
Field tools, optional | |||
2,000 lb Mini Excavator | Sunbelt Rentals | 350110 | Rental equipment for mechanical excavation |
Breaker or digging bar | Any home supply store | Useful to break rocks and cut roots during excavation | |
Galvanized Cattle Fence Panel, 16 ft x 50 in | Tractor Supply Co. | 350207799 | Recommend cutting fencing panels into 8' sections |
Pick mattock or pulaski | Any home supply store | Great for loosening in hard or rocky soils | |
Post Hole Auger Hydraulic Tow Behind with 18" diameter auger | Sunbelt Rentals | 700033 | Rental equipment for mechanical excavation |
Post hole digger, 48 in handle | Any home supply store | Useful to clear soil in bottom of pit, or for test holes | |
Steel fence T-posts, 6 feet tall and fence post driver, ~14 lb. | Any home supply store | Fencing support and installation | |
Steel rake | Any home supply store | Ideal for smoothing disturbed soil at field area | |
Every Day Carry (EDC), recommendations for any field technician's toolbag | |||
Adjustable wrench with insulated handle | Any home supply store | ||
Assorted UV-resistant zip ties | Any home supply store | Critical for neat wiring | |
Diagonal cutting pliers | Any home supply store | Efficient way to cut light and heavy wires and snip zip ties | |
Digital camera, GPS, and compass | Misc. | Ideally, these are all on your smartphone | |
Digital multimeter | Any home supply store | Key tool for troubleshooting power and connectivity issues in electrical systems | |
Electrical tape | Any home supply store | Non-black tape can be used for labeling | |
Electrician's Puddy for filling entrance holes of enclosures | Any home supply store | Needed to close and seal all conduit ports in the enclosure | |
Hex key sets in both standard and metric sizes | Any home supply store | Required for many sensor mounts | |
Magnetic torpedo level (8 to 12") | Any home supply store | Needed to get instrument stand vertical and leveling any meteorlogical sensors | |
Metric tape measure | Any home supply store | Critical for inserting probes and sampling soils - both use metric depths. | |
Pliers: needle nose, lineman's, and channel-lock | Any home supply store | Lineman's pliers are essential for bailing wire fences. | |
Portable drill, bits, nut drivers | Any home supply store | ||
Ratchet wrench and appropriate socket sizes | Any home supply store | Ratch wrenches can get into tight spaces around sensor mounts where standard box wrenches do not work | |
Safety: first aid kit, water (5 gallons), trash bags, gloves, sunscreen, insect repellent | Any home supply store | ||
Screw drivers: small and large size with insulated handles | Any home supply store | Screws on DCP and terminal blocks are very small. Small flat and phillips heads are required. Larger tools will also come in handy | |
Sharpies, pencils, and notebook | Forestry Supplier | Basic record keeping is essential for metadata | |
Step ladder, 6 ft | Any home supply store | Hard to install 2m sensors without a ladder | |
Utility knife and box cutter | Any home supply store | ||
Vegetation control: hand loppers, weed whacker, saw | Any home supply store | Depending on the environment, vegetation can quickly overwhelm a fenced off areas. | |
Wire strippers (8-20 gage) | Any home supply store | Essential tool for preparing wires for insertion into DCP or terminal blocks. Self-adjusting strippers are the latest rage | |
Annual Maintenance Supplies | |||
Battery cleaner (baking soda) and brush | Any grocery store | ||
Cleaning:compressed air, isopropyl alcohol, tooth brush, pipe cleaners, paper towels | Any grocery store | ||
Desiccant, silica gel bags | Clariant | Desi Pak | Reusable after oven drying at 105 °C for over 24 h. Swap out annually. |
Field calibration device for rain gage | R.M. Young | 52260 | Device that drips water into a rain gage at varying intensity |
Handheld Weather Meter | Kestrel Instruments | 0830 | Direct measurement of air temperature, relative humidity, and wind speed for field verification |
One quart and one gallon freezer bags | Any grocery store | Storage for any gravimetric soil samples | |
Portable soil moisture sensor | Delta-T Devics | SM150T | A variety of sensors exist. See evaluation at https://acsess.onlinelibrary.wiley.com/doi/pdf/10.1002/vzj2.20033 |
Soil core sampler, 2-1/4 in. Diameter | Soilmoisture Equipment Corp. | 0200 | Gravimetric soil moisture and bulk density sampler |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。