登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本协议描述了流体叩击引起的创伤性脑损伤的大鼠模型,然后进行一系列行为测试,以了解主导和顺从行为的发展。将这种创伤性脑损伤模型与特定行为测试结合使用,可以研究脑损伤后的社会障碍。

摘要

对食物、领地和配偶等资源的竞争显着影响动物物种内部的关系,并通过通常基于支配-顺从关系的社会等级制度进行调解。支配-顺从关系是一个物种个体之间的正常行为模式。创伤性脑损伤是动物对中社会互动障碍和支配-顺从关系重组的常见原因。该协议描述了成年雄性Sprague-Dawley大鼠在诱导创伤性脑损伤后通过诱导后29天至33天之间进行的一系列显性 - 顺从测试与幼稚大鼠相比的顺从行为诱导诱导后29天至33天。显性顺从行为测试显示了脑损伤如何诱导争夺食物的动物的顺从行为。在创伤性脑损伤后,啮齿动物更加顺从,这表明它们在喂食器上花费的时间更少,并且与对照动物相比不太可能首先到达低谷。根据该协议,成年雄性大鼠的创伤性脑损伤后发生顺从行为。

引言

当同一物种的成员同时争夺有限的资源时,就会发生种内竞争1.相反,种间竞争发生在两个不同物种的成员之间2。种内竞争分为两种类型,包括干扰(适应)和开发(竞争),其产生取决于争夺的资源类型,例如食物和领土3

没有支配-顺从关系 (DSR),社会等级制度的存在是不可能的。优势表现为成对动物中的"赢",从属表现为"输"4。但是,DSR 不仅成对出现,而且以三个或更多为一组出现。1922年,Thorleif Schjelderup-Ebbe描述了家鸡的支配等级制度。主要和从属动物之间的主要区别标志是在喂食器上花费的时间和攻击行为。优势层次结构分为两种形式:线性和非线性5.线性优势涉及两组,A 和 B。在这种传递关系范式6中,A组主导B组,或B组主导A组.当至少存在一个循环关系时,就会发生非线性优势:A主导B,B主导C,C主导A7

不同物种存在评估支配-顺从行为的模型,包括啮齿动物、鸟类8、非人类灵长类动物91011 和人类12。显性-顺从法在文献中得到了很好的体现,并已被用作评估躁狂和抑郁的模型13,以及抗抑郁药物活性14。该模型已被用于研究成年大鼠母体分离后的早期生活压力15。DSR范式可分为三个模型:显性行为模型13,16的减少顺从行为模型14的减少和支配模型17的可乐定逆转。

这项研究展示了通过基于食物竞争的任务对DSR的调查。这种方法的优点是易于重现,能够观察和准确分析支配-顺从行为。此外,与类似的行为任务不同,支配-顺从行为任务依赖于食物而不是领土,这使得这种行为任务成本更低、更简单,研究人员不需要经过复杂的训练来执行任务和处理数据。

目前研究的总体目标是证明创伤性脑损伤(TBI)后DSR的发展。TBI 与社交障碍、抑郁和焦虑有关。诱导TBI的模型是一种简单有效的标准模型,涉及使用液体叩诊装置诱导创伤性脑损伤18,19

研究方案

实验得到了内盖夫本古里安大学动物护理委员会的批准,实验是根据赫尔辛基和东京宣言以及欧洲共同体实验动物护理和使用指南的建议进行的。本研究使用成年雄性Sprague-Dawley大鼠,体重300-350g。将动物饲养在22°C±1°C的室温40%-60%的湿度下,进行明暗循环。

1. 动物制备

  1. 随机选择30只成年雄性大鼠,并将它们分为两组:TBI和假大鼠。
  2. 随意提供食物(见材料表和水。
    注意:同时执行测试的所有步骤,以控制一天中的时间对行为表现的影响。最好在早上(上午 6:00 至下午 12:00 之间进行行为测试),以避免一般活动的干扰。
  3. 对两组大鼠在损伤前的神经系统严重程度评分进行基线评估,如步骤3和 表1中所述。
  4. 用4%(用于诱导)和1.5%(用于维持)异氟醚麻醉大鼠。注射丁丙诺啡(0.05-0.1毫克/千克;SC)用于先发制人的镇痛。
  5. 通过测试对兴奋剂的反应是否缺乏运动或踏板反射来检查大鼠的固定情况。
    注意:对于麻醉给药,建议连续流动异氟醚。

2. 外科手术

注意:所有程序均应在无菌条件下进行。使用无菌手套。如果触摸任何非无菌表面,请更换手套。在双眼上涂抹眼科润滑剂以防止干燥。矢状旁液体叩诊损伤是在先前发表的报告18,20之后进行的。

  1. 用0.5%布比卡因浸润头皮(见 材料表),进行10毫米切口,然后横向回缩组织。
  2. 进行开颅术18,20 后部 4 mm 和后侧 4 mm 后侧。
    注意:手术区域必须用碘基或氯己定基磨砂膏和酒精以圆周运动方式消毒数次。
  3. 通过三通旋塞阀,通过流体冲击装置(参见材料表)在 21-23 ms 内诱导 TBI18,19
    注意:执行振幅为 2.5 atm 的中等 TBI。
  4. 对假手术大鼠组进行开颅手术(图1)。不要为假手术组诱导 TBI。
  5. 在闭合伤口之前进行0.1%的布比卡因浸润。在停用异氟醚之前,肌内注射丁丙诺啡(0.01-0.05mg / kg)作为术后镇痛药。
    注意:每12小时重复剂量丁丙诺啡至少48小时。
  6. 将大鼠转移到恢复室,并监测其呼吸(例如呼吸停止),神经系统(例如瘫痪)和心血管状态(例如,瞳孔颜色的变化,软组织灌注减少和心动过缓)24小时。

3. 神经系统严重程度评分评估

注意:行为改变和运动功能的最高分是24分。0分表示神经功能完整,24分表示严重神经功能障碍21,22,23表1)。

  1. 评估手术前,手术后48小时(图2A)和手术后第28天(图2B)对TBI和假大鼠的神经严重程度评分(NSS),如前所述24

4. 研究支配-顺从行为

  1. 在测试前1周将大鼠随机分成笼子。
    注意:每个笼子应包含一只假手术大鼠和一只TBI大鼠。
  2. 在测试前每天进行一次 15 分钟的会议,持续 2 天,以便大鼠能够适应该方案。
    注意:主导-顺从任务是在受伤后第29天开始的(图1)。
  3. 使用由两个透明的亚克力玻璃盒(30厘米x 20厘米x 20厘米,框A和框B,图3)制成的设备(见材料表),通过细长的15厘米x 15厘米x 60厘米隧道15,19,25连接。
  4. 用加糖牛奶填充喂料器(图3),并将其放在隧道的中心。使用由10%糖和3%脂肪组成的牛奶。
  5. 将设备放在离地板80厘米高的桌子上。
  6. 将每只大鼠置于装置中15分钟,以便在前2天习惯化。习惯性 2 天后开始任务。
  7. 从对照组中随机选择一只大鼠,从创伤性脑损伤(TBI)组中随机选择一只大鼠,并将它们设置为与饲养器相等的距离,让它们探索5分钟。
  8. 允许老鼠随意获得水。
    注意:任务持续了 5 天。在整个任务期间进行食物限制。测试期后每天给予食物1小时。
  9. 在对其他大鼠进行后续测试之前,用5%酒精清洁设备。
    注意:清洁设备将消除以前大鼠的气味。在空气流通适当的房间内进行测试。

5. 录制视频和数据分析

  1. 放置相机,并安装推荐的计算机软件(请参阅 材料表)以捕获、保存和处理数据。
    注意:摄像机需要安装在距离地板 290 厘米的高度。
  2. 当老鼠在竞技场中时录制视频。
    注:照相机和设备相距210厘米。进行测试的竞技场部分必须在摄像机帧中可见。
  3. 由两名对组视而不见的分析师手动执行数据分析23

结果

神经系统严重程度评分评估
使用NSS评估TBI后雄性大鼠的神经功能缺损。将大鼠分为两组:TBI组1组和对照组1组。对照组接受假手术。NSS允许通过积分系统22,23评估运动功能和行为改变;24分表示严重神经功能障碍,0分表示神经功能完整。TBI组和假手术组在手术前1 h的神经功能缺损无统计学意义。与假手术大鼠相比,TBI大鼠术后48小时的神经功...

讨论

临床研究表明,脑损伤可能会增加患精神疾病的风险26,27。此外,TBI影响社会行为的发展28,29。在该协议中,TBI模型对主导 - 顺从行为的呈现有影响。支配顺从行为表现为在喂食器上花费的时间以及谁先来到喂食器。

除了这里执行的行为任务外,还存在其他用于评估支配-顺从关系的任务?...

披露声明

作者没有什么可透露的。

致谢

所做的工作是德米特里·弗兰克博士论文的一部分。

材料

NameCompanyCatalog NumberComments
2% chlorhexidine in 70% alcohol solutionSIGMA - ALDRICH500 ccFor general antisepsis of the skin in the operatory field
4 boards of different thicknesses (1.5 cm, 2.5 cm, 5 cm and 8.5 cm)This is to evaluate neurological defect
4-0 Nylon suture4-00
BottlesTechniplastACBT0262SU
Bupivacaine 0.1 %
Diamond Hole Saw Drill 3 mm diameterGlass Hole Saw KitOptional.
Digital Weighing ScaleSIGMA - ALDRICHRs 4,000
Dissecting scissorsSIGMA - ALDRICHZ265969
Ethanol 99.9 %Pharmacy5%-10% solution used to clean equipment and remove odors
Fluid-percussion devicecustom-made at the university workshopNo specific brand is recommended.
Gauze SpongesFisher
Gloves (thin laboratory gloves)Optional.
Heater with thermometerHeatingpad-1Model: HEATINGPAD-1/2No specific brand is recommended.
Horizon-XLMennen Medical Ltd
Isofluran, USP 100%Piramamal Critical Care, IncNDC 66794-017Anesthetic liquid for inhalation
Logitech Webcam SoftwareLogitech2.51Software for video camera
Operating forcepsSIGMA - ALDRICH
Operating ScissorsSIGMA - ALDRICH
PC Computer for USV recording and data analysesIntelIntel core i5-6500 CPU @ 3.2GHz, 16 GB RAM, 64-bit operating system
Plexiglass boxes linked by a narrow passageTwo transparent 30 cm × 20 cm × 20 cm plexiglass boxes linked by a narrow 15 cm × 15 cm × 60 cm passage
Purina ChowPurina5001Rodent laboratory chow given to rats,  is a lifecycle nutrition that has been used in biomedical research
Rat cages (rat home cage or another enclosure)Techniplast2000PNo specific brand is recommended
Scalpel blades 11SIGMA - ALDRICHS2771
SPSSSPSS Inc., Chicago, IL, USAA 20 package
Stereotaxic Instrumentcustom-made at the university workshopNo specific brand is recommended
Timing deviceInterval Timer:Timing for recording USV'sOptional. Any timer will do, although it is convenient to use an interval timer if you are tickling multiple rats
Video cameraLogitechC920 HD PRO WEBCAMDigital video camera for high definition recording of rat behavior under dominant submissive test

参考文献

  1. Birch, L. C. The meanings of competition. The American Naturalist. 91 (856), 5-18 (1957).
  2. Crombie, A. C. Interspecific competition. The Journal of Animal Ecology. 16 (1), 44-73 (1947).
  3. Riechert, S. E., Dugatkin, L. A., Reeve, H. R. Game theory and animal contests. Game Theory and Animal Behavior. , 64-93 (1998).
  4. Chase, I. D., Tovey, C., Spangler-Martin, D., Manfredonia, M. Individual differences versus social dynamics in the formation of animal dominance hierarchies. Proceedings of the National Academy of Sciences of the United States of America. 99 (8), 5744-5749 (2002).
  5. Vonk, J., Shackelford, T. K. . Encyclopedia of Animal Cognition and Behavior. , (2019).
  6. De Vries, H. An improved test of linearity in dominance hierarchies containing unknown or tied relationships. Animal Behaviour. 50 (5), 1375-1389 (1995).
  7. Appleby, M. C. The probability of linearity in hierarchies. Animal Behaviour. 31 (2), 600-608 (1983).
  8. Drent, P. J., Oers, K. v., Noordwijk, A. J. v. Realized heritability of personalities in the great tit (Parus major). Proceedings of the Royal Society of London. Series B: Biological Sciences. 270 (1510), 45-51 (2003).
  9. Sapolsky, R. M. Endocrinology alfresco: psychoendocrine studies of wild baboons. Recent Progress in Hormone Research. 48, 437-468 (1993).
  10. Shively, C. A. Social subordination stress, behavior, and central monoaminergic function in female cynomolgus monkeys. Biological Psychiatry. 44 (9), 882-891 (1998).
  11. Shively, C. A., Grant, K. A., Ehrenkaufer, R. L., Mach, R. H., Nader, M. A. Social stress, depression, and brain dopamine in female cynomolgus monkeys. Annals of the New York Academy of Sciences. 807, 574-577 (1997).
  12. Tse, W. S., Bond, A. J. Difference in serotonergic and noradrenergic regulation of human social behaviours. Psychopharmacology. 159 (2), 216-221 (2002).
  13. Malatynska, E., Knapp, R. J. Dominant-submissive behavior as models of mania and depression. Neuroscience & Biobehavioral Reviews. 29 (4-5), 715-737 (2005).
  14. Malatynska, E., et al. Reduction of submissive behavior in rats: A test for antidepressant drug activity. Pharmacology. 64 (1), 8-17 (2002).
  15. Frank, D., et al. Early life stress induces submissive behavior in adult rats. Behavioural Brain Research. 372, 112025 (2019).
  16. Knapp, R. J., et al. Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model. European Journal of Pharmacology. 440 (1), 27-35 (2002).
  17. Malatyńska, E., Kostowski, W. The effect of antidepressant drugs on dominance behavior in rats competing for food. Polish Journal of Pharmacology and Pharmacy. 36 (5), 531-540 (1984).
  18. Kabadi, S. V., Hilton, G. D., Stoica, B. A., Zapple, D. N., Faden, A. I. Fluid-percussion-induced traumatic brain injury model in rats. Nature Protocols. 5 (9), 1552-1563 (2010).
  19. Boyko, M., et al. Traumatic brain injury-induced submissive behavior in rats: Link to depression and anxiety. Translational Psychiatry. 12 (1), 239 (2022).
  20. Jones, N. C., et al. Experimental traumatic brain injury induces a pervasive hyperanxious phenotype in rats. Journal of Neurotrauma. 25 (11), 1367-1374 (2008).
  21. Frank, D., et al. A novel histological technique to assess severity of traumatic brain injury in rodents: Comparisons to neuroimaging and neurological outcomes. Frontiers in Neuroscience. 15, 733115 (2021).
  22. Frank, D., et al. A metric test for assessing spatial working memory in adult rats following traumatic brain injury. Journal of Visualized Experiments. (171), e62291 (2021).
  23. Frank, D., et al. Induction of diffuse axonal brain injury in rats based on rotational acceleration. Journal of Visualized Experiments. (159), e61198 (2020).
  24. Zlotnik, A., et al. β2 adrenergic-mediated reduction of blood glutamate levels and improved neurological outcome after traumatic brain injury in rats. Journal of Neurosurgical Anesthesiology. 24 (1), 30-38 (2012).
  25. Frank, D., et al. A novel histological technique to assess severity of traumatic brain injury in rodents: Comparisons to neuroimaging and neurological outcomes. Frontiers in Neuroscience. 15, 733115 (2021).
  26. Marinkovic, I., et al. Prognosis after mild traumatic brain injury: Influence of psychiatric disorders. Brain Sciences. 10 (12), 916 (2020).
  27. Robert, S. Traumatic brain injury and mood disorders. Mental Health Clinician. 10 (6), 335-345 (2020).
  28. Sabaz, M., et al. Prevalence, comorbidities, and correlates of challenging behavior among community-dwelling adults with severe traumatic brain injury: A multicenter study. The Journal of Head Trauma Rehabilitation. 29 (2), 19-30 (2014).
  29. Aaronson, A., Lloyd, R. B. Aggression after traumatic brain injury: A review of the current literature. Psychiatric Annals. 45 (8), 422-426 (2015).
  30. Koolhaas, J. M., et al. The resident-intruder paradigm: A standardized test for aggression, violence and social stress. Journal of Visualized Experiments. (77), e4367 (2013).
  31. Bhatnagar, S., Vining, C. Facilitation of hypothalamic-pituitary-adrenal responses to novel stress following repeated social stress using the resident/intruder paradigm. Hormones and Behavior. 43 (1), 158-165 (2003).
  32. Boyko, M., et al. The effect of depressive-like behavior and antidepressant therapy on social behavior and hierarchy in rats. Behavioural Brain Research. 370, 111953 (2019).
  33. Gruenbaum, B. F., et al. A complex diving-for-food Task to investigate social organization and interactions in rats. Journal of Visualized Experiments. (171), e61763 (2021).
  34. Grasmuck, V., Desor, D. Behavioural differentiation of rats confronted to a complex diving-for-food situation. Behavioural Processes. 58 (1-2), 67-77 (2002).
  35. Pinhasov, A., Crooke, J., Rosenthal, D., Brenneman, D., Malatynska, E. Reduction of Submissive Behavior Model for antidepressant drug activity testing: Study using a video-tracking system. Behavioural Pharmacology. 16 (8), 657-664 (2005).
  36. Nesher, E., et al. Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals. Behavioural Brain Research. 236 (1), 225-235 (2013).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

190 TBI

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。