损伤模型对于研究体内再生是必不可少的,然而,研究肠道再生被证明是一项技术挑战。缺乏纵向成像方案阻碍了对协调肠道再生的细胞和组织规模动力学的更深入的了解。在该协议中,我们描述了一种活体显微镜方法,该方法以单隐窝规模局部诱导组织损伤,并遵循活小鼠中肠上皮对基于光子的激光消融损伤的再生反应单隐窝或更大的肠野以时间和空间控制的方式。
随后的、长期的、重复的活体成像能够随着时间的推移跟踪受损区域,并允许在数周的组织恢复期间监测隐窝动力学。通过在手术前四到六周注射溶解在葵花籽油中的他莫昔芬来诱导小鼠。应用镇痛药,术前30分钟皮下注射丁丙诺啡200微升。
术前 24 小时在饮用水中给予卡洛芬。在生物危害柜中引入高压灭菌无菌手术工具。打开加热垫,将温度设置为37摄氏度。
在成像前至少四小时打开显微镜的温度控制室。保持气候室内的温度稳定在37摄氏度。打开两个光子显微镜、扫描仪和激光。
启动成像软件。将激光的波长调谐到960纳米并打开快门。使用2至3%异氟醚麻醉小鼠,并将其放在覆盖有无菌布的加热垫上。
通过评估每秒呼吸一次的频率和质量以及检查鼠标的反射来检查麻醉深度。用眼药膏覆盖小鼠的眼睛。皮下注射200微升预热的无菌盐水。
剃掉腹部并去除毛发。更换手术区域的无菌布。插入直肠探头以监测小鼠的温度。
温度应约为 37 摄氏度。戴上一副新的无菌手套。用消毒液交替擦洗,然后用80%乙醇擦洗三次,以圆形方式清洁手术区域。
用无菌手术布覆盖小鼠。检查鼠标的反射。使用无菌手术刀在皮肤上做一个 10 毫米的垂直中线切口。
用剪刀切开白线,分离腹直肌并打开腹部。使用浸有预热盐水的无菌棉签找到小鼠的盲肠,将其用作参考点。在纱布片上切一个小切口,用预热的无菌盐水润湿,然后将其放在切口上方。
用浸泡在预热无菌盐水中的无菌棉签取出肠道。通过添加灭菌的预热盐水来保持肠道水分。将鼠标转移到预热的无菌成像盒中。
将肠放在无菌玻璃上。将鼠标头放在成像盒的吸入管内。如有必要,用无菌柔性薄膜和胶带固定鼠标。
将装有鼠标的成像盒放入显微镜室中。通过每15分钟通过直肠探头检查呼吸的频率和深度以及温度,在成像过程中监测小鼠。异氟醚应保持在1%至2%之间,使用显微镜的IP在肠道中寻找一个区域。
使用显微镜的内部摄像头获得感兴趣区域的宽视野。使用多光子显微镜的960纳米激光器对感兴趣区域进行成像。根据实验中使用的氟型调整激光功率和波长。
在该示例中,隐窝表达的膜是红色荧光蛋白,并且在用低端剂量的他莫昔芬诱导时用绿色荧光蛋白随机标记。获取感兴趣区域的 10 到 20 步 3 微米的 Z 堆栈。从之前的磁贴图像中选择单个位置或多个位置。
使用成像软件中的突破点校准功能,分辨率为 32 和 124 x 124 像素,扫描速度为 400 赫兹,使用双向扫描属性 3 到 10 秒,具体取决于目标损坏的大小。隐窝区域损伤的开始可以通过绿色和红色通道中自发荧光的增加来识别。消融后,获取受损区域的Z堆栈以确认损坏的位置和程度。
对同一鼠标中的多个区域重复前两个步骤。将仍在麻醉下的小鼠放在无菌缝合区域,并用无菌窗帘覆盖。使用浸有预热无菌盐水的无菌棉签将暴露的肠插入腹部。
通过使用可吸收缝合线进行简单的连续缝合来缝合白线。用手术结关闭缝合线的四肢。对皮肤层重复相同的步骤。
关闭异氟醚工作站,清洁并消毒成像盒和镶嵌物。让小鼠从手术中恢复,同时将笼子放在加热垫上一小时。术后 6 至 12 小时皮下注射 200 微升丁丙诺啡。
手术后 72 小时在饮用水中给予卡洛芬。在手术后一周内每天称量小鼠并监测福利。在第一次影像学检查后至少一周的第二个时间点,重复手术和活体成像。
使用血管模式在第一个时间点找回相同的感兴趣区域图像。如果小鼠不打算在另一个时间点成像,则通过在麻醉下进行颈椎脱位来牺牲小鼠。否则,继续关闭手术部位和术后护理。
在手术和第一次成像会议前四至六周,向K19-Cre ERT mTmG小鼠注射他莫昔芬以诱导GFP细胞的随机标记。在手术暴露小鼠肠道并获得感兴趣区域的相机和荧光图像后,使用多光子激光器的破坏点设置来消融隐窝。损伤的开始可以通过绿色和红色通道中自发荧光的增加来识别。
一个月后重复相同的程序,并将脉管系统用作找回相同区域的标志。使用Lgr5-eGFP五彩纸屑模型,可以随着时间的推移跟踪标有不同颜色的隐窝,以绘制恢复的动态。在此示例中,绿色的地穴表示 Lgr5 Cre,洋红色的地穴用五彩纸屑颜色标记。
激光烧蚀后两周观察到不同的再生模式。一些区域保持不变,而其他地区则以地穴裂变的形式表现出重塑,因此将一个地穴分裂为两个,或融合,将两个地穴合并为一个,或地穴消失。激光消融结合活体显微镜方法可限制对特定感兴趣区域的损伤。
这使我们能够控制损坏的位置以及损坏程度。损伤严重程度可以调节为消融隐窝或整个肠野,以告知我们隐窝尺度的再生反应。除了空间控制之外,激光消融还允许在同一只小鼠的稳态和再生条件下对同一器官进行成像,从而精确地确定损伤的发生时间,从而超越了以前损伤模型的精度。
激光消融和重复活体成像的应用可用作众多研究问题和跨越再生、免疫学和癌症研究的各种科学领域的平台。