Here we present a protocol for the detection of microRNA expression in rat peritoneal membrane using quantitative real-time reverse-transcription polymerase chain reaction. This method is suitable for studying the microRNA expression profile in rat peritoneal membrane in several pathological conditions.
We describe a method for evaluating the microRNA expression in the kidneys of mice with unilateral ureteral obstruction (UUO) by quantitative reverse-transcription polymerase chain reaction. This protocol is suitable for studying kidney microRNA expression profiles in mice with UUO and in the context of other pathological conditions.
We present a protocol to measure regional oxygen saturation (rSO2) in hemodialysis (HD) patients by using a near-infrared spectroscopy monitor. The rSO2 value is an index of tissue oxygenation. This noninvasive and real-time monitoring could be useful for confirming changes in organ oxygenation during HD.
We present a method for evaluating microRNA expression in the kidney and serum of mice with age-dependent renal impairment by quantitative reverse-transcription polymerase chain reaction.
Here, we deliver exogenous artificially synthesized miRNA mimics to the kidney via tail vein injection of a nonviral vector and polyethylenimine nanoparticles in several kidney disease mouse models. This led to significant overexpression of target miRNA in the kidney, resulting in inhibited progression of kidney disease in several mouse models.
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten