We demonstrate the use of the gene gun to introduce fluorescent dyes, such as DiI, into neurons in brain slices from rodents and non-human primates of different ages. In this particular case, we use adult mice (3-6 months old) and adult cynomologus monkeys (9-15 years old). This technique, originally described by the laboratory of Dr. Lichtman (Gan et al., 2000), is well suited for the study of dendritic branching and dendritic spine morphology and can be combined with traditional immunostaining, if detergents are kept at a low concentration.
This protocol shows how to retrogradely label retinal ganglion cells, and how to subsequently make an optic nerve crush injury in order to analyze retinal ganglion cell survival and apoptosis. It is an experimental disease model for different types of optic neuropathy, including glaucoma.
The cornea is unique in that it lacks vascular tissues. However, robust blood vessel growth and survival can be induced in the cornea by potent angiogenic factors. Therefore, the cornea can provide with us a valuable tool for angiogenic studies. This protocol demonstrates how to perform the mouse model of cornea pocket assay and how to assess the angiogenesis induced by angiogenic factors using this model.
This procedure demonstrates in vivo near IR fluorescence imaging of collagen remodeling activities in mice as well as ex vivo staining of collagens in tissue sections using caged collagen mimetic peptides that can be photo-triggered to hybridize with denatured collagen strands.
Neural-machine interfaces (NMI) have been developed to identify the user's locomotion mode. These NMIs are potentially useful for neural control of powered artificial legs, but have not been fully demonstrated. This paper presented (1) our designed engineering platform for easy implementation and development of neural control for powered lower limb prostheses and (2) an experimental setup and protocol in a laboratory environment to evaluate neurally-controlled artificial legs on patients with lower limb amputations safely and efficiently.
We have established a technique for the isolation, phenotypic characterization and functional analysis of immune cells from murine gingiva.
Here we describe a rapid equilibrium dialysis (RED) method to measure drug binding to caseum from pulmonary tuberculosis lesions and cavities. The protocol is also used with a foamy macrophage-derived matrix that is an effective surrogate to caseum.
Described is a methodology to quantitate the expression of 96 genes and 18 surface proteins by single cells ex vivo, allowing for the identification of differentially expressed genes and proteins in virus-infected cells relative to uninfected cells. We apply the approach to study SIV-infected CD4+ T cells isolated from rhesus macaques.
Integration of diverse synaptic inputs to neurons is best measured in a preparation that preserves all pre-synaptic nuclei for natural timing and circuit plasticity, but brain slices typically sever many connections. We developed a modified brain slice to mimic in vivo circuit activity while maintaining in vitro experimentation capability.
Single-particle cryo-electron microscopy demands a suitable software package and user-friendly pipeline for high-throughput automatic data acquisition. Here, we present the application of a fully automated image acquisition software package, Latitude-S, and a practical pipeline for data collection of vitrified biomolecules under low-dose conditions.
Here we present a protocol for the isolation of BMMs from SD rats, called the secondary adherence method.
This protocol describes the isolation of double-negative thymocytes from the mouse thymus followed by retroviral transduction and co-culture on the delta-like 4-expressing bone marrow stromal cell line co-culture system (OP9-DL4) for further functional analysis.
A self-assembled peptide-poloxamine nanoparticle (PP-sNp) is developed using a microfluidic mixing device to encapsulate and deliver in vitro transcribed messenger RNA. The described mRNA/PP-sNp could efficiently transfect cultured cells in vitro.
Optogenetic manipulation of signaling pathways can be a powerful strategy to investigate how signaling is decoded in development, regeneration, homeostasis, and disease. This protocol provides practical guidelines for using light-oxygen-voltage sensing domain-based Nodal and bone morphogenic protein (BMP) signaling activators in the early zebrafish embryo.
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten